Spaceborne laser filamentation for atmospheric remote sensing

被引:67
作者
Dicaire, I. [1 ]
Jukna, V. [2 ]
Praz, C. [1 ]
Milian, C. [2 ]
Summerer, L. [1 ]
Couairon, A. [2 ]
机构
[1] European Space Agcy, Adv Concepts Team, POB 299, NL-2200 AG Noordwijk, Netherlands
[2] Univ Paris Saclay, Ecole Polytech, Ctr Phys Theor, CNRS, F-91128 Palaiseau, France
关键词
laser filamentation; space systems; white-light lidar; optical remote sensing; WHITE-LIGHT FILAMENTS; FEMTOSECOND FILAMENTATION; CONICAL EMISSION; PULSES; AIR; LIDAR; PROPAGATION; INTENSITY; PRESSURES; ALADIN;
D O I
10.1002/lpor.201500283
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A proof-of-concept of space-borne laser filamentation for atmospheric remote sensing is presented. The remote generation of laser filaments from an Earth-orbiting satellite is shown by numerical simulations to be theoretically possible for a large range of laser parameters. The model includes a realistic representation of the stratified atmosphere and accounts for multi-species ionization and the dependence of air density upon the molecule type and altitude profile. The remote generation of a white light continuum extending from 350 nm to 1.1 mu m within the filament is demonstrated, and hereby proposed as an atmospheric in-situ light source for monitoring greenhouse gases and pollutants on a global scale by light detection and ranging (lidar) techniques. Scaling laws are also derived for estimating the filament altitude as a function of peak pulse power (3 GW-3 TW), beam radii (10-200 cm) and for three different curvatures (300, 390, 500 km) for femtosecond infrared (800 nm) pulses. We find that operating conditions for remote supercontinuum generation are already available with current ground-based mobile laser technology and within reach of future space laser systems.
引用
收藏
页码:481 / 493
页数:13
相关论文
共 68 条
[1]  
Amplitude Technologies, 2014, TT MOBILE INT MOB LA
[2]   Particle backscatter and extinction profiling with the spaceborne high-spectral-resolution Doppler lidar ALADIN: methodology and simulations [J].
Ansmann, Albert ;
Wandinger, Ulla ;
Le Rille, Olivier ;
Lajas, Dulce ;
Straume, Anne Grete .
APPLIED OPTICS, 2007, 46 (26) :6606-6622
[3]   ESA's sentinel missions in support of Earth system science [J].
Berger, Michael ;
Moreno, Jose ;
Johannessen, Johnny A. ;
Levelt, Pieternel F. ;
Hanssen, Ramon F. .
REMOTE SENSING OF ENVIRONMENT, 2012, 120 :84-90
[4]   Pressure independence of intensity clamping during filamentation: theory and experiment [J].
Bernhardt, J. ;
Liu, W. ;
Chin, S. L. ;
Sauerbrey, R. .
APPLIED PHYSICS B-LASERS AND OPTICS, 2008, 91 (01) :45-48
[5]  
BESPALOV VI, 1966, JETP LETT-USSR, V3, P307
[6]   White-light filaments for multiparameter analysis of cloud microphysics [J].
Bourayou, R ;
Méjean, G ;
Kasparian, J ;
Rodriguez, M ;
Salmon, E ;
Yu, J ;
Lehmann, H ;
Stecklum, B ;
Laux, U ;
Eislöffel, J ;
Scholz, A ;
Hatzes, AP ;
Sauerbrey, R ;
Wöste, L ;
Wolf, JP .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2005, 22 (02) :369-377
[7]   SELF-CHANNELING OF HIGH-PEAK-POWER FEMTOSECOND LASER-PULSES IN AIR [J].
BRAUN, A ;
KORN, G ;
LIU, X ;
DU, D ;
SQUIER, J ;
MOUROU, G .
OPTICS LETTERS, 1995, 20 (01) :73-75
[8]   SPOT DANCING OF LASER BEAM PROPAGATED THROUGH TURBULENT ATMOSPHERE [J].
CHIBA, T .
APPLIED OPTICS, 1971, 10 (11) :2456-&
[9]   Spaceborne Lasers Development for ALADIN and ATLID Instruments [J].
Cosentino, Alberto ;
D'Ottavi, Alessandro ;
Sapia, Adalberto ;
Suetta, Enrico .
2012 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2012, :5673-5676
[10]   Femtosecond filamentation in transparent media [J].
Couairon, A. ;
Mysyrowicz, A. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2007, 441 (2-4) :47-189