Thermodynamic geometry of fractional statistics

被引:58
作者
Mirza, Behrouz [1 ]
Mohammadzadeh, Hosein [1 ]
机构
[1] Isfahan Univ Technol, Dept Phys, Esfahan 8415683111, Iran
来源
PHYSICAL REVIEW E | 2010年 / 82卷 / 03期
关键词
RIEMANNIAN GEOMETRY; IDEAL-GAS; EXCLUSION STATISTICS; PARTICLES; STABILITY; MECHANICS;
D O I
10.1103/PhysRevE.82.031137
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We extend our earlier study about the fractional exclusion statistics to higher dimensions in full physical range and in the nonrelativistic and ultrarelativistic limits. Also, two other fractional statistics, namely, Gentile and Polychronakos fractional statistics, will be considered and similarities and differences between these statistics will be explored. Thermodynamic geometry suggests that a two dimensional Haldane fractional exclusion gas is more stable than higher dimensional gases. Also, a complete picture of attractive and repulsive statistical interaction of fractional statistics is given. For a special kind of fractional statistics, by considering the singular points of thermodynamic curvature, we find a condensation for a nonpure bosonic system which is similar to the Bose-Einstein condensation and the phase transition temperature will be worked out.
引用
收藏
页数:10
相关论文
共 45 条
[1]   Unified geometric description of black hole thermodynamics [J].
Alvarez, Jose L. ;
Quevedo, Hernando ;
Sanchez, Alberto .
PHYSICAL REVIEW D, 2008, 77 (08)
[2]   Geometry of black hole thermodynamics [J].
Åman, JE ;
Bengtsson, I ;
Pidokrajt, N .
GENERAL RELATIVITY AND GRAVITATION, 2003, 35 (10) :1733-1743
[3]  
Aoyama T, 2001, EUR PHYS J B, V20, P123
[4]  
BANERJEE R, ARXIV10054832
[5]   Generalized exclusion statistics and degenerate signature of strongly interacting anyons [J].
Batchelor, M. T. ;
Guan, X. -W. .
PHYSICAL REVIEW B, 2006, 74 (19)
[6]   GEOMETRICAL ASPECTS OF STATISTICAL-MECHANICS [J].
BRODY, D ;
RIVIER, N .
PHYSICAL REVIEW E, 1995, 51 (02) :1006-1011
[7]   Information geometry in vapour-liquid equilibrium [J].
Brody, Dorje C. ;
Hook, Daniel W. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (02)
[8]  
Gentile G., 1940, NUOVO CIMENTO, V17, P493, DOI DOI 10.1007/BF02960187
[9]  
Gentile j., 1942, Nuovo Cim. Nuova Ser., V19, P109, DOI 10.1007/BF02960192
[10]   PARTICLE STATISTICS FROM INDUCED REPRESENTATIONS OF A LOCAL CURRENT GROUP [J].
GOLDIN, GA ;
MENIKOFF, R ;
SHARP, DH .
JOURNAL OF MATHEMATICAL PHYSICS, 1980, 21 (04) :650-664