Efficient error estimation in quantum key distribution

被引:11
作者
Li Mo [1 ,2 ]
Treeviriyanupab, Patcharapong [3 ]
Zhang Chun-Mei [1 ,2 ]
Yin Zhen-Qiang [1 ,2 ]
Chen Wei [1 ,2 ]
Han Zheng-Fu [1 ,2 ]
机构
[1] Univ Sci & Technol China, Chinese Acad Sci, Key Lab Quantum Informat, Hefei 230026, Peoples R China
[2] Univ Sci & Technol China, Synerget Innovat Ctr Quantum Informat & Quantum P, Hefei 230026, Peoples R China
[3] Phranakhon Rajabhat Univ, Fac Sci & Technol, Dept Comp Sci, Bangkok, Thailand
基金
中国国家自然科学基金;
关键词
error estimation; parity comparison; quantum key distribution; RECONCILIATION; SECURITY; SYSTEM;
D O I
10.1088/1674-1056/24/1/010302
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In a quantum key distribution (QKD) system, the error rate needs to be estimated for determining the joint probability distribution between legitimate parties, and for improving the performance of key reconciliation. We propose an efficient error estimation scheme for QKD, which is called parity comparison method (PCM). In the proposed method, the parity of a group of sifted keys is practically analysed to estimate the quantum bit error rate instead of using the traditional key sampling. From the simulation results, the proposed method evidently improves the accuracy and decreases revealed information in most realistic application situations.
引用
收藏
页数:4
相关论文
共 16 条
[1]  
[Anonymous], 1963, THESIS MIT
[2]  
Bennett C. H., 1984, P IEEE INT C COMP SY, P175, DOI [DOI 10.1103/REVMODPHYS.74.145, DOI 10.1016/J.TCS.2014.05.025, 10.1016/j.tcs.2014.05.025]
[3]  
Brassard G., 1994, ADV CRYPTOLOGY EUROC, P410
[4]   A Real-Time Design Based on FPGA for Expeditious Error Reconciliation in QKD System [J].
Cui, Ke ;
Wang, Jian ;
Zhang, Hong-Fei ;
Luo, Chun-Li ;
Jin, Ge ;
Chen, Teng-Yun .
IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2013, 8 (01) :184-190
[5]   Gigahertz decoy quantum key distribution with 1 Mbit/s secure key rate [J].
Dixon, A. R. ;
Yuan, Z. L. ;
Dynes, J. F. ;
Sharpe, A. W. ;
Shields, A. J. .
OPTICS EXPRESS, 2008, 16 (23) :18790-18797
[6]   A quantum access network [J].
Froehlich, Bernd ;
Dynes, James F. ;
Lucamarini, Marco ;
Sharpe, Andrew W. ;
Yuan, Zhiliang ;
Shields, Andrew J. .
NATURE, 2013, 501 (7465) :69-+
[7]   Quantum cryptography [J].
Gisin, N ;
Ribordy, GG ;
Tittel, W ;
Zbinden, H .
REVIEWS OF MODERN PHYSICS, 2002, 74 (01) :145-195
[8]  
Gottesman D, 2004, QUANTUM INF COMPUT, V4, P325
[9]  
Jesus M M, 2013, SCI REP, V3, P1576
[10]   Time-cost analysis of a quantum key distribution system clocked at 100 MHz [J].
Mo, X. F. ;
Lucio-Martinez, I. ;
Chan, P. ;
Healey, C. ;
Hosier, S. ;
Tittel, W. .
OPTICS EXPRESS, 2011, 19 (18) :17729-17737