The Nehari manifold for a boundary value problem involving Riemann-Liouville fractional derivative

被引:38
|
作者
Saoudi, Kamel [1 ]
Agarwal, Praveen [2 ,3 ]
Kumam, Poom [4 ,5 ]
Ghanmi, Abdeljabbar [6 ]
Thounthong, Phatiphat [7 ,8 ]
机构
[1] Univ Dammam, Coll Sci Dammam, Dammam, Saudi Arabia
[2] Int Ctr Basic & Appl Sci, Jaipur, Rajasthan, India
[3] Anand Int Coll Engn, Dept Math, Jaipur, Rajasthan, India
[4] KMUTT, Fac Sci, Dept Math, KMUTTFixed Point Res Lab, Room SCL 802, Bangkok, Thailand
[5] KMUTT, Fac Sci, Theoret & Computat Sci Ctr TaCS, Fixed Point Theory & Applicat Res Grp, Sci Lab Bldg, Bangkok, Thailand
[6] Univ Jeddah, Fac Sci & Arts, Math Dept, Jeddah, Saudi Arabia
[7] KMUTNB, Fac Tech Educ, Renewable Energy Res Ctr, Bangkok, Thailand
[8] KMUTNB, Fac Tech Educ, Dept Teacher Training Elect Engn, Bangkok, Thailand
关键词
Nonlinear fractional differential equations; Riemann-Liouville and Caputo fractional derivative; Critical point theory; Existence of solutions; Method of Nehari manifold; EXISTENCE; CALCULUS;
D O I
10.1186/s13662-018-1722-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We aim to investigate the following nonlinear boundary value problems of fractional differential equations: (P lambda){-D-t(1)alpha (vertical bar D-0(t)alpha(u(t))vertical bar(p-2)(0)D(t)(alpha)u(t)) = f (t,u(t)) +lambda g(t)vertical bar u(t)vertical bar(q-2)u(t) (t is an element of(0, 1)), u(0) = u(1) = 0, where. is a positive parameter, 2 < r < p < q, 1/2 < alpha < 1, g is an element of C([0, 1]), and f is an element of C([0, 1] xR, R). Under appropriate assumptions on the function f, we employ the method of Nehari manifold combined with the fibering maps in order to show the existence of solutions to the boundary value problem for the nonlinear fractional differential equations with Riemann- Liouville fractional derivative. We also present an example as an application.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] The Nehari manifold for a boundary value problem involving Riemann–Liouville fractional derivative
    Kamel Saoudi
    Praveen Agarwal
    Poom Kumam
    Abdeljabbar Ghanmi
    Phatiphat Thounthong
    Advances in Difference Equations, 2018
  • [2] A Fractional Boundary Value Problem with φ-Riemann-Liouville Fractional Derivative
    Ji, Dehong
    Yang, Yitao
    IAENG International Journal of Applied Mathematics, 2020, 50 (04) : 1 - 5
  • [3] A Note on a Kirchhoff type Boundary Value Problem Involving Riemann-Liouville Fractional Derivative
    Rehman, Nadeem ur
    Alyami, Maryam Ahmed
    Alhirabi, Hawatin Mohammed
    Ghanmi, Abdeljabbar
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2024, 42
  • [4] On Impulsive Boundary Value Problem with Riemann-Liouville Fractional Order Derivative
    Khan, Zareen A.
    Gul, Rozi
    Shah, Kamal
    JOURNAL OF FUNCTION SPACES, 2021, 2021
  • [5] BOUNDARY VALUE PROBLEM FOR PARTIAL DIFFERENTIAL EQUATION WITH FRACTIONAL RIEMANN-LIOUVILLE DERIVATIVE
    Repin, Oleg Alexandrovich
    UFA MATHEMATICAL JOURNAL, 2015, 7 (03): : 67 - 72
  • [6] Positive solutions for a boundary-value problem with Riemann-Liouville fractional derivative
    Xu, Jiafa
    Wei, Zhongli
    Ding, Youzheng
    LITHUANIAN MATHEMATICAL JOURNAL, 2012, 52 (04) : 462 - 476
  • [7] Periodic boundary value problems for fractional differential equations involving a Riemann-Liouville fractional derivative
    Wei, Zhongli
    Dong, Wei
    Che, Junling
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 73 (10) : 3232 - 3238
  • [8] Boundary value problem for the heat equation with a load as the Riemann-Liouville fractional derivative
    Pskhu, A., V
    Kosmakova, M. T.
    Akhmanova, D. M.
    Kassymova, L. Zh
    Assetov, A. A.
    BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS, 2022, 105 (01): : 74 - 82
  • [9] Boundary Layers in a Riemann-Liouville Fractional Derivative Two-Point Boundary Value Problem
    Luis Gracia, Jose
    Stynes, Martin
    BOUNDARY AND INTERIOR LAYERS, COMPUTATIONAL AND ASYMPTOTIC METHODS - BAIL 2014, 2015, 108 : 87 - 98
  • [10] Nontrivial solutions for an integral boundary value problem involving Riemann-Liouville fractional derivatives
    Fu, Zhengqing
    Bai, Shikun
    O'Regan, Donal
    Xu, Jiafa
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2019, 2019 (1)