Hamiltonian suspension of perturbed Poincare sections and an application

被引:1
作者
Bessa, Mario [1 ]
Dias, Joao Lopes [2 ]
机构
[1] Univ Beira Interior, P-6201001 Covilha, Portugal
[2] Univ Tecn Lisboa, ISEG, P-1200781 Lisbon, Portugal
关键词
HOMOCLINIC TANGENCIES; UNIFORM HYPERBOLICITY; CLOSED ORBITS; DYNAMICS;
D O I
10.1017/S0305004114000140
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct a Hamiltonian suspension for a given symplectomorphism which is the perturbation of a Poincare map. This is especially useful for the conversion of perturbative results between symplectomorphisms and Hamiltonian flows in any dimension 2d. As an application, using known properties of area-preserving maps, we prove that for any Hamiltonian defined on a symplectic 4-manifold M and any point p is an element of M, there exists a C-2-close Hamiltonian whose regular energy surface through p is either Anosov or contains a homo-clinic tangency.
引用
收藏
页码:101 / 112
页数:12
相关论文
共 18 条
[1]  
[Anonymous], 2005, 412 I MATHM BOURG DI
[2]  
[Anonymous], 1997, ANN FAC SCI TOULOUSE, DOI DOI 10.5802/AFST.885
[3]   Homoclinic bifurcations and uniform hyperbolicity for three-dimensional flows [J].
Arroyo, A ;
Hertz, FR .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2003, 20 (05) :805-841
[4]  
Bessa M, 2009, P AM MATH SOC, V137, P585
[5]   Generic dynamics of 4-dimensional C2 Hamiltonian systems [J].
Bessa, Mario ;
Dias, Joao Lopes .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2008, 281 (03) :597-619
[6]   On the stability of the set of hyperbolic closed orbits of a Hamiltonian [J].
Bessa, Mario ;
Ferreira, Celia ;
Rocha, Jorge .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2010, 149 :373-383
[7]   Homoclinic tangencies versus uniform hyperbolicity for conservative 3-flows [J].
Bessa, Mario ;
Rocha, Jorge .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 247 (11) :2913-2923
[8]   Hamiltonian suspensions of symplectomorphisms: an alternative approach to design problems [J].
Channell, PJ .
PHYSICA D, 1999, 127 (3-4) :117-130
[9]  
DOUADY R, 1982, CR ACAD SCI I-MATH, V295, P201
[10]   Abundance of elliptic isles at conservative bifurcations [J].
Duarte, P .
DYNAMICS AND STABILITY OF SYSTEMS, 1999, 14 (04) :339-356