Correlating Fe source with Fe-N-C active site construction: Guidance for rational design of high-performance ORR catalyst

被引:111
作者
Gao, Liqin [1 ,2 ]
Xiao, Meiling [1 ]
Jin, Zhao [3 ]
Liu, Changpeng [3 ]
Zhu, Jianbing [1 ]
Ge, Junjie [3 ]
Xing, Wei [1 ,3 ]
机构
[1] Chinese Acad Sci, State Key Lab Electroanalyt Chem, Changchun Inst Appl Chem, Changchun 130022, Jilin, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100039, Peoples R China
[3] Changchun Inst Appl Chem, Lab Adv Power Sources, Changchun 130022, Jilin, Peoples R China
基金
中国国家自然科学基金;
关键词
Carbon-nitrogen-coordinated iron (FeN4); Oxygen reduction reaction; Iron source; Molecular size; Hydrolysis; OXYGEN-REDUCTION REACTION; MEMBRANE FUEL-CELLS; CARBON; IRON; ELECTROCATALYST; POLYANILINE; GROWTH;
D O I
10.1016/j.jechem.2018.06.008
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Pyrolyzed Fe-N-x/C materials derived from Fe-doped ZIF-8 are recently emerged as promising alternatives to noble metal platinum-based catalysts towards oxygen reduction reaction (ORR) and elucidating the dependacne of Fe source on the active site structure and final ORR performance is highly desirbale for further development of these materials. Here, we designed and synthesized a series of Fe-N-C catalysts using ZIF-8 and various iron salts (Fe(acac)(3), FeCl3, Fe(NO3)(3)) as precusors. We found that the iron precursors, mainly the molecular size, hydrolysis extent, do play a major role in determining the final morphology of Fe, namely forming the Fe-Nx coordination or Fe3C nanoparticles, as well as the site density, therefore, significantly affecting the ORR activity. Among the three iron sources, Fe(acac)(3) is most advantageous to the preferential formation of single-atom Fe-Nx active sites and the derived catalyst demonstrated best ORR performance. (C) 2018 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.
引用
收藏
页码:1668 / 1673
页数:6
相关论文
共 36 条
  • [1] [Anonymous], 2013, ANGEW CHEM
  • [2] Structural Descriptors of Zeolitic-Imidazolate Frameworks Are Keys to the Activity of Fe-N-C Catalysts
    Armel, Vanessa
    Hindocha, Sheena
    Salles, Fabrice
    Bennett, Stephen
    Jones, Deborah
    Jaouen, Frederic
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2017, 139 (01) : 453 - 464
  • [3] Isolated Single Iron Atoms Anchored on N-Doped Porous Carbon as an Efficient Electrocatalyst for the Oxygen Reduction Reaction
    Chen, Yuanjun
    Ji, Shufang
    Wang, Yanggang
    Dong, Juncai
    Chen, Wenxing
    Li, Zhi
    Shen, Rongan
    Zheng, Lirong
    Zhuang, Zhongbin
    Wang, Dingsheng
    Li, Yadong
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2017, 56 (24) : 6937 - 6941
  • [4] Direct atomic-level insight into the active sites of a high-performance PGM-free ORR catalyst
    Chung, Hoon T.
    Cullen, David A.
    Higgins, Drew
    Sneed, Brian T.
    Holby, Edward F.
    More, Karren L.
    Zelenay, Piotr
    [J]. SCIENCE, 2017, 357 (6350) : 479 - 483
  • [5] Active and stable carbon nanotube/nanoparticle composite electrocatalyst for oxygen reduction
    Chung, Hoon T.
    Won, Jong H.
    Zelenay, Piotr
    [J]. NATURE COMMUNICATIONS, 2013, 4
  • [6] Well-Defined ZIF-Derived Fe-N Codoped Carbon Nanoframes as Efficient Oxygen Reduction Catalysts
    Deng, Yijie
    Dong, Yuanyuan
    Wang, Guanghua
    Sun, Kailing
    Shi, Xiudong
    Zheng, Long
    Li, Xiuhua
    Liao, Shijun
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (11) : 9699 - 9709
  • [7] General synthesis and definitive structural identification of MN4C4 single-atom catalysts with tunable electrocatalytic activities
    Fei, Huilong
    Dong, Juncai
    Feng, Yexin
    Allen, Christopher S.
    Wan, Chengzhang
    Volosskiy, Boris
    Li, Mufan
    Zhao, Zipeng
    Wang, Yiliu
    Sun, Hongtao
    An, Pengfei
    Chen, Wenxing
    Guo, Zhiying
    Lee, Chain
    Chen, Dongliang
    Shakir, Imran
    Liu, Mingjie
    Hu, Tiandou
    Li, Yadong
    Kirkland, Angus I.
    Duan, Xiangfeng
    Huang, Yu
    [J]. NATURE CATALYSIS, 2018, 1 (01): : 63 - 72
  • [8] Multitechnique Characterization of a Polyaniline-Iron-Carbon Oxygen Reduction Catalyst
    Ferrandon, Magali
    Kropf, A. Jeremy
    Myers, Deborah J.
    Artyushkova, Kateryna
    Kramm, Ulrike
    Bogdanoff, Peter
    Wu, Gang
    Johnston, Christina M.
    Zelenay, Piotr
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (30) : 16001 - 16013
  • [9] Metal-Organic Framework-Derived Non-Precious Metal Nanocatalysts for Oxygen Reduction Reaction
    Fu, Shaofang
    Zhu, Chengzhou
    Song, Junhua
    Du, Dan
    Lin, Yuehe
    [J]. ADVANCED ENERGY MATERIALS, 2017, 7 (19)
  • [10] Role of transition metal catalysts in single-walled carbon nanotube growth in chemical vapor deposition
    Homma, Y
    Kobayashi, Y
    Ogino, T
    Takagi, D
    Ito, R
    Jung, YJ
    Ajayan, PM
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2003, 107 (44) : 12161 - 12164