Although atmospheric particles are often non-spherical, Mie theory is commonly used to acquire aerosol optical depth, composition, and transport information from satellite retrievals. In the infrared (IR) region, the radiative effects of aerosols, usually modeled with Mie theory, are subtracted from satellite spectral data to determine key atmospheric and oceanic properties. To gain a better understanding of the infrared radiative effects of aerosols and the methods used to model them, an instrument has been designed to simultaneously measure infrared extinction spectra and particle size distributions obtained from a scanning mobility particle sizer (SMPS) and an aerodynamic particle sizer (APS). Infrared extinction spectra are simulated with Mie theory using the measured particle size distributions and available literature optical constants. As a result, the errors associated with using Mie theory to model the infrared extinction of mineral dust aerosol can be quantitatively examined. Initial results for this instrument are presented here. For ammonium sulfate, the Mie theory simulation is in good agreement with our measured extinction spectrum. This is in accordance with the nearly spherical shape of ammonium sulfate particles. However, for illite, an abundant clay mineral, there is poor agreement between the experimental spectrum and the Mie simulation. This result is attributed to particle shape effects.