Introduction to Monte Carlo methods

被引:0
|
作者
Mackay, DJC [1 ]
机构
[1] Univ Cambridge, Cavendish Lab, Dept Phys, Cambridge CB3 0HE, England
来源
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This chapter describes a sequence of Monte Carlo methods: importance sampling, rejection sampling, the Metropolis method, and Gibbs sampling. For each method, we discuss whether the method is expect-ed to be useful for high-dimensional problems such as arise in inference with graphical models. After the methods have been described, the terminology of Markov chain Monte Carlo methods is presented. The chapter concludes with a discussion of advanced methods, including methods for reducing random walk behaviour. For details of Monte Carlo methods, theorems and proofs and a full list of references, the reader is directed to Neal (1993), Gilks, Richardson and Spiegelhalter (1996), and Tanner (1996).
引用
收藏
页码:175 / 204
页数:30
相关论文
共 50 条
  • [31] Monte Carlo methods in ICF
    Zimmerman, GB
    LASER INTERACTION AND RELATED PLASMA PHENOMENA - 13TH INTERNATIONAL CONFERENCE, 1997, (406): : 23 - 41
  • [32] Quantum Monte Carlo methods
    Luechow, Arne
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE, 2011, 1 (03) : 388 - 402
  • [33] Clock Monte Carlo methods
    Michel, Manon
    Tan, Xiaojun
    Deng, Youjin
    PHYSICAL REVIEW E, 2019, 99 (01):
  • [34] Multilevel Monte Carlo methods
    Giles, Michael B.
    ACTA NUMERICA, 2015, 24 : 259 - 328
  • [35] Optimized Monte Carlo methods
    Marinari, E
    ADVANCES IN COMPUTER SIMULATION, 1998, 501 : 50 - 81
  • [36] Monte-Carlo methods
    Pontikis, V
    THERMODYNAMICS, MICROSTRUCTURES AND PLASTICITY, 2003, 108 : 377 - 392
  • [37] Multilevel Monte Carlo methods
    Heinrich, S
    LARGE-SCALE SCIENTIFIC COMPUTING, 2001, 2179 : 58 - 67
  • [38] Monte Carlo methods in stereovision
    Sénégas, J
    Schmitt, M
    Nonin, P
    PROCEEDINGS OF THE 6TH JOINT CONFERENCE ON INFORMATION SCIENCES, 2002, : 885 - 889
  • [39] MATHEMATICAL BASIS OF MONTE CARLO AND QUASI-MONTE CARLO METHODS
    ZAREMBA, SK
    SIAM REVIEW, 1968, 10 (03) : 303 - &
  • [40] Biased Monte Carlo methods
    Frenkel, D
    MONTE CARLO METHOD IN THE PHYSICAL SCIENCES, 2003, 690 : 99 - 109