Introduction to Monte Carlo methods

被引:0
|
作者
Mackay, DJC [1 ]
机构
[1] Univ Cambridge, Cavendish Lab, Dept Phys, Cambridge CB3 0HE, England
来源
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This chapter describes a sequence of Monte Carlo methods: importance sampling, rejection sampling, the Metropolis method, and Gibbs sampling. For each method, we discuss whether the method is expect-ed to be useful for high-dimensional problems such as arise in inference with graphical models. After the methods have been described, the terminology of Markov chain Monte Carlo methods is presented. The chapter concludes with a discussion of advanced methods, including methods for reducing random walk behaviour. For details of Monte Carlo methods, theorems and proofs and a full list of references, the reader is directed to Neal (1993), Gilks, Richardson and Spiegelhalter (1996), and Tanner (1996).
引用
收藏
页码:175 / 204
页数:30
相关论文
共 50 条
  • [21] MONTE CARLO METHODS
    不详
    ICC BULLETIN, 1965, 4 (02): : 151 - &
  • [22] MONTE CARLO METHODS
    Kalos, M. H.
    EDWARD TELLER CENTENNIAL SYMPOSIUM: MODERN PHYSICS AND THE SCIENTIFIC LEGACY OF EDWARD TELLER, 2010, : 128 - 139
  • [23] MONTE CARLO METHODS
    FRANKLIN, JN
    MATHEMATICS OF COMPUTATION, 1965, 19 (90) : 340 - &
  • [24] MONTE CARLO METHODS
    JUNCOSA, ML
    SIAM REVIEW, 1965, 7 (03) : 435 - &
  • [25] Monte carlo methods: A hands-on computational introduction utilizing excel
    Chowdhury S.
    Synthesis Lectures on Mathematics and Statistics, 2021, 13 (01): : 1 - 133
  • [26] INTRODUCTION TO MONTE CARLO SIMULATION
    Raychaudhuri, Samik
    2008 WINTER SIMULATION CONFERENCE, VOLS 1-5, 2008, : 91 - 100
  • [27] The Monte Carlo method, an introduction
    Reiter, Detlev
    COMPUTATIONAL MANY-PARTICLE PHYSICS, 2008, 739 : 63 - 78
  • [28] Introduction to Monte Carlo algorithms
    Krauth, W
    ADVANCES IN COMPUTER SIMULATION, 1998, 501 : 1 - 35
  • [29] Introduction to Monte Carlo Simulation
    Harrison, Robert L.
    NUCLEAR PHYSICS METHODS AND ACCELERATORS IN BIOLOGY AND MEDICINE, 2009, 1204 : 17 - 21
  • [30] Monte Carlo and quasi-Monte Carlo methods - Preface
    Spanier, J
    Pengilly, JH
    MATHEMATICAL AND COMPUTER MODELLING, 1996, 23 (8-9) : R11 - R13