Dynamic search trajectory methods for global optimization

被引:2
作者
Alexandropoulos, Stamatios-Aggelos N. [1 ]
Pardalos, Panos M. [2 ]
Vrahatis, Michael N. [1 ]
机构
[1] Univ Patras, Dept Math, Computat Intelligence Lab CILab, GR-26110 Patras, Greece
[2] Univ Florida, Dept Ind & Syst Engn, CAO, Gainesville, FL 32611 USA
关键词
Dynamic search trajectories; Trajectory methods; Autonomous initial value problems; Globally convergent algorithms; Nonmonotone convergent strategies; Global optimization; Neural networks training; PARTICLE SWARM OPTIMIZATION; LAMINATED COMPOSITE PLATES; OPTIMAL-DESIGN; UNCONSTRAINED MINIMIZATION; CONVERGENCE CONDITIONS; STEEPEST DESCENT; ALGORITHMS; OPERATORS; VERSION;
D O I
10.1007/s10472-019-09661-7
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A detailed review of the dynamic search trajectory methods for global optimization is given. In addition, a family of dynamic search trajectories methods that are created using numerical methods for solving autonomous ordinary differential equations is presented. Furthermore, a strategy for developing globally convergent methods that is applicable to the proposed family of methods is given and the corresponding theorem is proved. Finally, theoretical results for obtaining nonmonotone convergent methods that exploit the accumulated information with regard to the most recent values of the objective function are given.
引用
收藏
页码:3 / 37
页数:35
相关论文
共 96 条
[1]   No Free Lunch Theorem: A Review [J].
Adam, Stavros P. ;
Alexandropoulos, Stamatios-Aggelos N. ;
Pardalos, Panos M. ;
Vrahatis, Michael N. .
APPROXIMATION AND OPTIMIZATION: ALGORITHMS, COMPLEXITY AND APPLICATIONS, 2019, 145 :57-82
[2]  
[Anonymous], 1972, APPL NONLINEAR PROGR
[3]  
[Anonymous], 2002, Numerical Recipes in C++: The Art of Scientific Computing
[4]  
[Anonymous], 2010 INT JOINT C NEU
[5]  
[Anonymous], COMPUT METHODS PROGR
[6]  
[Anonymous], 1995, Handbook of Global Optimization, DOI DOI 10.1007/978-1-4615-2025-22
[7]  
[Anonymous], SERIES APPL MATH
[8]  
[Anonymous], P 1 INT C SCI COMP C
[9]  
[Anonymous], S MATH
[10]  
[Anonymous], IMPROVED NSGA 3 ALG