A sharp nonlinear stability threshold in rotating porous convection

被引:125
作者
Straughan, B [1 ]
机构
[1] Univ Durham, Dept Math Sci, Durham DH1 3LE, England
来源
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2001年 / 457卷 / 2005期
关键词
rotating porous convection; Darcy equations; Coriolis effect;
D O I
10.1098/rspa.2000.0657
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A nonlinear stability analysis is performed for the Darcy equations of thermal convection in a fluid-saturated porous medium when the medium is rotating about an axis orthogonal to the layer in the direction of gravity. A best possible result is established in that we show that the global nonlinear stability Rayleigh number is exactly the same as that for linear instability. It is important to realize that the nonlinear stability boundary holds unconditionally, i.e. for all initial data, and thus for the rotating porous convection problem governed by the Darcy equations, subcritical instabilities are not possible.
引用
收藏
页码:87 / 93
页数:7
相关论文
共 15 条
[1]  
Chandrasekhar S, 1981, HYDRODYNAMIC HYDROMA
[2]  
Doering C. R., 1995, APPL ANAL NAVIER STO, P12
[3]   Bounds for heat transport in a porous layer [J].
Doering, CR ;
Constantin, P .
JOURNAL OF FLUID MECHANICS, 1998, 376 :263-296
[4]   NONLINEAR STABILITY PROBLEM OF A ROTATING DOUBLY DIFFUSIVE POROUS LAYER [J].
GUO, JL ;
KALONI, PN .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1995, 190 (02) :373-390
[5]   The rotating Benard problem: new stability results for any Prandtl and Taylor numbers [J].
Mulone, G ;
Rionero, S .
CONTINUUM MECHANICS AND THERMODYNAMICS, 1997, 9 (06) :347-363
[6]  
Nield D. A., 1999, Convection in porous media, VSecond ed.
[7]  
Nield DA, 1998, ADV FLUID MECH SER, P225
[8]   Unconditional nonlinear stability in temperature-dependent viscosity flow in a porous medium [J].
Payne, LE ;
Straughan, B .
STUDIES IN APPLIED MATHEMATICS, 2000, 105 (01) :59-81
[9]   NONLINEAR STABILITY PROBLEM OF A ROTATING POROUS LAYER [J].
QIN, Y ;
KALONI, PN .
QUARTERLY OF APPLIED MATHEMATICS, 1995, 53 (01) :129-142
[10]   Anisotropic porous penetrative convection [J].
Straughan, B ;
Walker, DW .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1996, 452 (1944) :97-115