Riesz Properties of Multiplication of a Pair of g-Sequences

被引:0
作者
Fereydooni, Abolhassan [1 ]
Rahimi, Asgar [2 ]
机构
[1] Ilam Univ, Dept Basic Sci, Ilam, Iran
[2] Univ Maragheh, Dept Math, Maragheh, Iran
来源
IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE | 2022年 / 46卷 / 03期
关键词
Frames; Riesz basis; Multiplier operators; g-frames; Fusion basis; Minimality; G-FRAMES; STABILITY; SPACES;
D O I
10.1007/s40995-022-01308-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this article, the properties of completeness, being Riesz, being basis and minimality of a pair of g-sequences Lambda = {Lambda(i) : H -> H-i}(i is an element of(sic)) and Gamma = {Gamma(i) : H -> H-i}(i is an element of(sic)) are simultaneously studied as well as investigating the above-mentioned properties about the sequences of subspaces induced by them. We show that the above properties are an extension of the definitions known about a single g-sequence Lambda. The effect of invertibility of the multiplier operator of sequences Lambda, Gamma on the above-mentioned properties will be investigated.
引用
收藏
页码:927 / 935
页数:9
相关论文
共 26 条
  • [1] Representation of the inverse of a frame multiplier
    Balazs, P.
    Stoeva, D. T.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 422 (02) : 981 - 994
  • [2] Basic definition and properties of Bessel multipliers
    Balazs, Peter
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 325 (01) : 571 - 585
  • [3] Bilalov BT, 2018, AZERBAIJAN J MATH, V8, P151
  • [4] Casazza P.G., 2004, CONTEMP MATH, V345, P87, DOI [DOI 10.1090/CONM/345/06242, DOI 10.1090/conm/345/06242]
  • [5] The art of frame theory
    Casazza, PG
    [J]. TAIWANESE JOURNAL OF MATHEMATICS, 2000, 4 (02): : 129 - 201
  • [6] Christensen Ole, 2010, Sampling Theory in Signal and Image Processing, V9, P77
  • [7] Christensen O, 2014, AZERBAIJAN J MATH, V4, P25
  • [8] Christensen O, 2008, APPL NUMER HARMON AN, P1, DOI 10.1007/978-0-8176-4678-3_1
  • [9] Daraby B, 2019, AZERBAIJAN J MATH, V9, P62
  • [10] PAINLESS NONORTHOGONAL EXPANSIONS
    DAUBECHIES, I
    GROSSMANN, A
    MEYER, Y
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1986, 27 (05) : 1271 - 1283