Two novel nitrogen-enriched porous organic polymers (POPs), HBP and TBP, were constructed via nucleophilic substitution reactions with high nitrogen contents up to 24.91% and 32.92% for sensing to nitroaromatic compounds (NACs) and adsorbing iodine. They were all systematically characterized by solid-state C-13 NMR, FT-IR, elemental analysis, solid-state UV-Vis, and other material analysis methods. The experimental data proved that both POPs possess high chemical and thermal stability, excellent fluorescence performance, and porous properties with Brunauer-Emmett-Teller (BET) specific surface areas of 32.88 and 68.00 m(2) g(-1). The two POPs have dual functions of fluorescence sensing and adsorption. On the one hand, due to their excellent conjugated properties and nitrogen-enriched structures, HBP and TBP exhibited incredibly high sensitivity to m-dinitrobenzene (m-DNB) and picric acid (PA) with K-SV values of 2.57 x 10(5) and 4.93 x 10(4) L mol(-1) and limits of detection of 1.17 x 10(-11) and 6.08 x 10(-11) mol L-1, respectively. On the other hand, owing to the plenty of nitrogen affinity sites, they exhibited excellent volatile iodine adsorption with 2.23 and 2.66 g g(-1), respectively. (C) 2021 Elsevier B.V. All rights reserved.