A Hybrid Segmentation and D-Bar Method for Electrical Impedance Tomography

被引:12
作者
Hamilton, S. J. [1 ]
Reyes, J. M. [2 ]
Siltanen, S. [3 ]
Zhang, X. [4 ,5 ]
机构
[1] Marquette Univ, Dept Math Stat & Comp Sci, Milwaukee, WI 53201 USA
[2] Cardiff Univ, Sch Comp Sci & Informat, Cardiff CF24 3AA, S Glam, Wales
[3] Univ Helsinki, Dept Math & Stat, FIN-00014 Helsinki, Finland
[4] Shanghai Jiao Tong Univ, Sch Math Sci, MOE LSC, Shanghai 200240, Peoples R China
[5] Shanghai Jiao Tong Univ, Inst Nat Sci, Shanghai 200240, Peoples R China
来源
SIAM JOURNAL ON IMAGING SCIENCES | 2016年 / 9卷 / 02期
基金
英国工程与自然科学研究理事会; 芬兰科学院;
关键词
electrical impedance tomography; D-bar method; edge preserving; scattering transform; Beltrami equation; LEVEL SET; NUMERICAL-SOLUTION; GLOBAL UNIQUENESS; ACTIVE CONTOURS; CONDUCTIVITY; RECONSTRUCTIONS; ALGORITHMS; REGULARIZATION; FRAMEWORK; EQUATION;
D O I
10.1137/15M1025992
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The regularized D-bar method for electrical impedance tomography (EIT) provides a rigorous mathematical approach for solving the full nonlinear inverse problem directly, i.e., without iterations. It is based on a low-pass filtering in the (nonlinear) frequency domain. However, the resulting D-bar reconstructions are inherently smoothed, leading to a loss of edge distinction. In this paper, a novel method that combines a D-bar approach with the edge-preserving nature of total variation (TV) regularization is presented. The method also includes a data-driven contrast adjustment technique guided by the key functions (CGO solutions) of the D-bar method. The new TV-enhanced D-bar method produces reconstructions with sharper edges and improved contrast. This is achieved by using the TV-induced edges to increase the truncation radius of the scattering data in the nonlinear frequency domain, thereby increasing the radius of the low-pass filter. The algorithm is tested on numerically simulated noisy EIT data and demonstrates significant improvements in edge preservation and contrast which can be highly valuable for absolute EIT imaging.
引用
收藏
页码:770 / 793
页数:24
相关论文
共 55 条
  • [1] [Anonymous], IMAGE PROCESSING ANA
  • [2] Astala K, 2006, COLLECT MATH, P127
  • [3] Calderon's inverse conductivity problem in the plane
    Astala, Kari
    Paivarinta, Lassi
    [J]. ANNALS OF MATHEMATICS, 2006, 163 (01) : 265 - 299
  • [4] Nonlinear Fourier analysis for discontinuous conductivities: Computational results
    Astala, Kari
    Paeivaerinta, Lassi
    Reyes, Juan Manuel
    Siltanen, Samuli
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 276 : 74 - 91
  • [5] DIRECT ELECTRICAL IMPEDANCE TOMOGRAPHY FOR NONSMOOTH CONDUCTIVITIES
    Astala, Kari
    Mueller, Jennifer L.
    Paivarinta, Lassi
    Peramaki, Allan
    Siltanen, Samuli
    [J]. INVERSE PROBLEMS AND IMAGING, 2011, 5 (03) : 531 - 549
  • [6] Numerical computation of complex geometrical optics solutions to the conductivity equation
    Astala, Kari
    Mueller, Jennifer L.
    Paivarinta, Lassi
    Siltanen, Samuli
    [J]. APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2010, 29 (01) : 2 - 17
  • [7] Aubert G., 2006, Mathematical problems in image processing: Partial differential equations and the calculus of variations, V147
  • [8] Global Minimization for Continuous Multiphase Partitioning Problems Using a Dual Approach
    Bae, Egil
    Yuan, Jing
    Tai, Xue-Cheng
    [J]. INTERNATIONAL JOURNAL OF COMPUTER VISION, 2011, 92 (01) : 112 - 129
  • [9] Bar L., 2011, Handbook of Math. Methods in Imaging, P1095, DOI DOI 10.1007/978-0-387-92920-025
  • [10] Fast global minimization of the active Contour/Snake model
    Bresson, Xavier
    Esedoglu, Selim
    Vandergheynst, Pierre
    Thiran, Jean-Philippe
    Osher, Stanley
    [J]. JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2007, 28 (02) : 151 - 167