A quantum version of Sanov's theorem

被引:47
作者
Bjelakovic, I
Deuschel, JD
Krüger, T
Seiler, R
Siegmund-Schultze, R
Szkola, A
机构
[1] Tech Univ Berlin, Inst Math, Fak Math & Nat Wissensch 2, D-10623 Berlin, Germany
[2] Univ Bielefeld, Fak Math, D-33619 Bielefeld, Germany
[3] Tech Univ Ilmenau, Inst Math, D-98684 Ilmenau, Germany
[4] Max Planck Inst Math Sci, D-04103 Leipzig, Germany
关键词
Entropy; Stationary Quantum; Reference State; Quantum Computing; Logarithmic Scale;
D O I
10.1007/s00220-005-1426-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a quantum version of Sanov's theorem focussing on a hypothesis testing aspect of the theorem: There exists a sequence of typical subspaces for a given set Psi of stationary quantum product states asymptotically separating them from another fixed stationary product state. Analogously to the classical case, the separating rate on a logarithmic scale is equal to the infimum of the quantum relative entropy with respect to the quantum reference state over the set Psi. While in the classical case the separating subsets can be chosen universally, in the sense that they depend only on the chosen set of i.i.d. processes, in the quantum case the choice of the separating subspaces depends additionally on the reference state.
引用
收藏
页码:659 / 671
页数:13
相关论文
共 17 条
[1]   An ergodic theorem for the quantum relative entropy [J].
Bjelakovic, I ;
Siegmund-Schultze, R .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2004, 247 (03) :697-712
[2]   The Shannon-McMillan theorem for ergodic quantum lattice systems [J].
Bjelakovic, I ;
Krüger, T ;
Siegmund-Schultze, R ;
Szkola, A .
INVENTIONES MATHEMATICAE, 2004, 155 (01) :203-222
[3]  
BJELAKOVIC I, UNPUB SANOV TYPE THE
[4]  
BJELAKOVIC I, 2003, CHAINED TYPICAL SUBS
[5]  
BJELAKOVIC I, 2003, NEW PROOF MONOTONICI
[6]   The data compression theorem for ergodic quantum information sources [J].
Bjelakovic, Igor ;
Szkola, Arleta .
QUANTUM INFORMATION PROCESSING, 2005, 4 (01) :49-63
[7]  
Cover TM, 2006, Elements of Information Theory
[8]  
DEUSCHEL J. D., 2001, LARGE DEVIATIONS
[9]  
GAUTSCHI W, 1975, NUMER MATH, V23, P337, DOI 10.1007/BF01438260
[10]   THE PROPER FORMULA FOR RELATIVE ENTROPY AND ITS ASYMPTOTICS IN QUANTUM PROBABILITY [J].
HIAI, F ;
PETZ, D .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1991, 143 (01) :99-114