Twisted conjugacy classes in saturated weakly branch groups

被引:34
作者
Fel'shtyn, Alexander [2 ,3 ]
Leonov, Yuriy [4 ]
Troitsky, Evgenij [1 ]
机构
[1] Moscow MV Lomonosov State Univ, Dept Mech & Math, Moscow 119992, Russia
[2] Univ Szczecin, Inst Matemat, PL-70451 Szczecin, Poland
[3] Boise State Univ, Dept Math, Boise, ID 83725 USA
[4] Odessa Acad Telecommun, IT Dept, UA-65000 Odessa, Ukraine
基金
美国国家科学基金会;
关键词
Reidemeister number; twisted conjugacy classes; Burnside-Frobenius theorem; weakly branch group; Grigorchuk group; Gupta-Sidki group;
D O I
10.1007/s10711-008-9245-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a wide class of saturated weakly branch groups, including the (first) Grigorchuk group and the Gupta-Sidki group, we prove that the Reidemeister number of any automorphism is infinite.
引用
收藏
页码:61 / 73
页数:13
相关论文
共 30 条
  • [1] [Anonymous], 2000, TOPICS GEOMETRIC GRO
  • [2] ARTHUR J, 1989, SIMPLE ALGEBRAS BASE
  • [3] BLEAK C, 2007, ARXIVMATHGR07043411
  • [4] Generalized Kaloujnine groups, uniseriality and height of automorphisms
    Ceccherini-Silberstein, TG
    Leonov, YG
    Scarabotti, F
    Tolli, F
    [J]. INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2005, 15 (03) : 503 - 527
  • [5] Fel'shtyn A., 2006, NONCOMMUTATIVE GEOME, P141
  • [6] Twisted Burnside-Frobenius theory for discrete groups
    Fel'shtyn, Alexander
    Troitsky, Evgenij
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2007, 613 : 193 - 210
  • [7] Fel'shtyn A, 2006, ALGEBRA DISCRET MATH, P36
  • [8] Fel'shtyn A, 2006, MATH RES LETT, V13, P719
  • [9] FELSHTYN A, UNPUB GEOMETRY REIDE
  • [10] FELSHTYN A, 2002, OTDEL MAT I STEKLOW, V279, P250