A note concerning a selection "Paradox" of Dawid's

被引:35
作者
Senn, Stephen [1 ]
机构
[1] Univ Glasgow, Dept Stat, Glasgow G12 8QQ, Lanark, Scotland
基金
英国工程与自然科学研究理事会;
关键词
Bayesian inference; hierarchical models; prior distributions; selection paradox;
D O I
10.1198/000313008X331530
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This article briefly reviews a selection "paradox" of Dawid's, whereby Bayesian inference appears to be unchanged whether or not treatments have been selected for inspection on the basis of extreme values. The problem is recast in terms of a hierarchical model. This offers an alternative explanation of the paradox but also reveals a disturbing dependence of inference on prior specification. The example may also be used to deepen students' understanding of the implications of using conjugate nonhierarchical priors in Bayesian analysis. To illustrate, some simulations are presented.
引用
收藏
页码:206 / 210
页数:5
相关论文
共 17 条
[1]   Bayesian statistics in medicine: A 25 year review [J].
Ashby, Deborah .
STATISTICS IN MEDICINE, 2006, 25 (21) :3589-3631
[2]  
Bartlett M. S., 1957, BIOMETRIKA, V44, P533, DOI [10.1093/biomet/44.3-4.533, DOI 10.1093/BIOMET/44.3-4.533]
[3]  
Box GEP, 1992, BAYESIAN INFERENCE S, DOI DOI 10.1002/9781118033197.CH4
[4]  
BOX GEP, 1994, MULTIVARIATE ANAL AP, V24
[5]   STATISTICAL-THEORY - THE PREQUENTIAL APPROACH [J].
DAWID, AP .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 1984, 147 :278-292
[6]  
DAWID AP, 1979, J ROY STAT SOC B MET, V41, P1
[7]   SAMPLING-BASED APPROACHES TO CALCULATING MARGINAL DENSITIES [J].
GELFAND, AE ;
SMITH, AFM .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1990, 85 (410) :398-409
[8]   A regulatory perspective on choice of margin and statistical inference issue in non-inferiority trials [J].
Hung, HMJ ;
Wang, SJ ;
O'Neill, R .
BIOMETRICAL JOURNAL, 2005, 47 (01) :28-36
[9]   Comments on 'Trying to be precise about vagueness' [J].
Lambert, Paul C. ;
Sutton, Alex J. ;
Burton, Paul R. ;
Abrams, Keith R. ;
Jones, David R. .
STATISTICS IN MEDICINE, 2008, 27 (04) :619-622
[10]   How vague is vague? A simulation study of the impact of the use of vague prior distributions in MCMC using WinBUGS [J].
Lambert, PC ;
Sutton, AJ ;
Burton, PR ;
Abrams, KR ;
Jones, DR .
STATISTICS IN MEDICINE, 2005, 24 (15) :2401-2428