The Chemistry Mechanism in the Community Earth System Model Version 2 (CESM2)

被引:268
作者
Emmons, Louisa K. [1 ]
Schwantes, Rebecca H. [1 ,2 ,3 ]
Orlando, John J. [1 ]
Tyndall, Geoff [1 ]
Kinnison, Douglas [1 ]
Lamarque, Jean-Francois [1 ]
Marsh, Daniel [1 ]
Mills, Michael J. [1 ]
Tilmes, Simone [1 ]
Bardeen, Charles [1 ]
Buchholz, Rebecca R. [1 ]
Conley, Andrew [1 ]
Gettelman, Andrew [1 ]
Garcia, Rolando [1 ]
Simpson, Isobel [4 ]
Blake, Donald R. [4 ]
Meinardi, Simone [4 ]
Petron, Gabrielle [5 ]
机构
[1] Natl Ctr Atmospher Res, POB 3000, Boulder, CO 80307 USA
[2] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA
[3] NOAA, Chem Sci Lab, Boulder, CO USA
[4] Univ Calif Irvine, Dept Chem, Irvine, CA 92717 USA
[5] NOAA, Earth Syst Res Lab, Boulder, CO USA
基金
美国国家科学基金会;
关键词
GLOBAL ATMOSPHERIC ETHANE; TROPOSPHERIC OZONE; SURFACE OZONE; EMISSIONS; ISOPRENE; AEROSOLS; OXIDATION; PHOTOOXIDATION; REPRESENTATION; SIMULATION;
D O I
10.1029/2019MS001882
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
The Community Earth System Model version 2 (CESM2) includes a detailed representation of chemistry throughout the atmosphere in the Community Atmosphere Model with chemistry and Whole Atmosphere Community Climate Model configurations. These model configurations use the Model for Ozone and Related chemical Tracers (MOZART) family of chemical mechanisms, covering the troposphere, stratosphere, mesosphere, and lower thermosphere. The new MOZART tropospheric chemistry scheme (T1) has a number of updates over the previous version (MOZART-4) in CESM, including improvements to the oxidation of isoprene and terpenes, organic nitrate speciation, and aromatic speciation and oxidation and thus improved representation of ozone and secondary organic aerosol precursors. An evaluation of the present-day simulations of CESM2 being provided for Climate Model Intercomparison Project round 6 (CMIP6) is presented. These simulations, using the anthropogenic and biomass burning emissions from the inventories specified for CMIP6, as well as online calculation of emissions of biogenic compounds, lightning NO, dust, and sea salt, indicate an underestimate of anthropogenic emissions of a variety of compounds, including carbon monoxide and hydrocarbons. The simulation of surface ozone in the southeast United States is improved over previous model versions, largely due to the improved representation of reactive nitrogen and organic nitrate compounds resulting in a lower ozone production rate than in CESM1 but still overestimates observations in summer. The simulation of tropospheric ozone agrees well with ozonesonde observations in many parts of the globe. The comparison of NOx and PAN to aircraft observations indicates the model simulates the nitrogen budget well.
引用
收藏
页数:21
相关论文
共 65 条
[1]   A time-averaged inventory of subaerial volcanic sulfur emissions [J].
Andres, RJ ;
Kasgnoc, AD .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1998, 103 (D19) :25251-25261
[2]  
[Anonymous], 2019, CESM2.1/CAM-chem Instantaneous Output for Boundary Conditions, DOI DOI 10.5065/NMP7-EP60
[3]  
Blake D., 2005, METHANE NONMETHANE H, DOI [10.3334/CDIAC/ATG.002, DOI 10.3334/CDIAC/ATG.002]
[4]   Development of a detailed chemical mechanism (MCMv3.1) for the atmospheric oxidation of aromatic hydrocarbons [J].
Bloss, C ;
Wagner, V ;
Jenkin, ME ;
Volkamer, R ;
Bloss, WJ ;
Lee, JD ;
Heard, DE ;
Wirtz, K ;
Martin-Reviejo, M ;
Rea, G ;
Wenger, JC ;
Pilling, MJ .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2005, 5 :641-664
[5]   Methyl chavicol: characterization of its biogenic emission rate, abundance, and oxidation products in the atmosphere [J].
Bouvier-Brown, N. C. ;
Goldstein, A. H. ;
Worton, D. R. ;
Matross, D. M. ;
Gilman, J. B. ;
Kuster, W. C. ;
Welsh-Bon, D. ;
Warneke, C. ;
de Gouw, J. A. ;
Cahill, T. M. ;
Holzinger, R. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2009, 9 (06) :2061-2074
[6]   MOZART, a global chemical transport model for ozone and related chemical tracers 1. Model description [J].
Brasseur, GP ;
Hauglustaine, DA ;
Walters, S ;
Rasch, PJ ;
Muller, JF ;
Granier, C ;
Tie, XX .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1998, 103 (D21) :28265-28289
[7]  
Burkholder J.B., 2015, JPL PUBLICATION, V15-10, DOI DOI 10.13140/RG.2.1.2504.2806
[8]  
Calvert J.G., 2002, The mechanism of atmospheric oxidation of aromatics hydrocarbons
[9]   SYNTHESIS OF THE SOUTHEAST ATMOSPHERE STUDIES: Investigating Fundamental Atmospheric Chemistry Questions [J].
Carlton, Annmarie G. ;
de Gouw, Joost ;
Jimenez, Jose L. ;
Ambrose, Jesse L. ;
Attwood, Alexis R. ;
Brown, Steven ;
Baker, Kirk R. ;
Brock, Charles ;
Cohen, Ronald C. ;
Edgerton, Sylvia ;
Farkas, Caroline M. ;
Farmer, Delphine ;
Goldstein, Allen H. ;
Gratz, Lynne ;
Guenther, Alex ;
Hunt, Sherri ;
Jaegle, Lyatt ;
Jaffe, Daniel A. ;
Mak, John ;
McClure, Crystal ;
Nenes, Athanasios ;
Thien Khoi Nguyen ;
Pierce, Jeffrey R. ;
de Sa, Suzane ;
Selin, Noelle E. ;
Shah, Viral ;
Shaw, Stephanie ;
Shepson, Paul B. ;
Song, Shaojie ;
Stutz, Jochen ;
Surratt, Jason D. ;
Turpin, Barbara J. ;
Warneke, Carsten ;
Washenfelder, Rebecca A. ;
Wennberg, Paul O. ;
Zhou, Xianling .
BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 2018, 99 (03) :547-567
[10]   Spatiotemporal Controls on Observed Daytime Ozone Deposition Velocity Over Northeastern US Forests During Summer [J].
Clifton, O. E. ;
Fiore, A. M. ;
Munger, J. W. ;
Wehr, R. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2019, 124 (10) :5612-5628