Uniqueness and continuous dependence of weak solutions in compressible magnetohydrodynamics

被引:117
作者
Hoff, D [1 ]
Tsyganov, E
机构
[1] Indiana Univ, Dept Math, Bloomington, IN 47405 USA
[2] Max Planck Inst Math Sci, D-04103 Leipzig, Germany
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2005年 / 56卷 / 05期
基金
美国国家科学基金会;
关键词
magnetohydrodynamics; continuous dependence; weak solutions;
D O I
10.1007/s00033-005-4057-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove uniqueness and continuous dependence on initial data of weak solutions of the equations of compressible magnetohydrodynamics. The solutions we consider may exhibit discontinuities in density and in the gradients of velocity, temperature, and magnetic field. Continuous dependence is deduced by duality from existence and regularity of solutions of the adjoint of the first variation system. The analysis is complicated by the absence of strict parabolicity, the strong nonlinear coupling in the highest-order terms, and the lack of regularity in the coefficients of the adjoint system.
引用
收藏
页码:791 / 804
页数:14
相关论文
共 6 条
[1]  
CABANNES H, 1970, THEORETICAL MAGNETOF
[2]   Existence and continuous dependence of large solutions for the magnetohydrodynamic equations [J].
Chen, GQ ;
Wang, DH .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2003, 54 (04) :608-632
[3]   Global solutions of nonlinear magnetohydrodynamics with large initial data [J].
Chen, GQ ;
Wang, DH .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2002, 182 (02) :344-376
[4]   Continuous dependence on initial data for discontinuous solutions of the Navier-Stokes equations for one-dimensional, compressible flow [J].
Hoff, D .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1996, 27 (05) :1193-1211
[5]   SMOOTH GLOBAL-SOLUTIONS FOR THE ONE-DIMENSIONAL EQUATIONS IN MAGNETOHYDRODYNAMICS [J].
KAWASHIMA, S ;
OKADA, M .
PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 1982, 58 (09) :384-387
[6]  
TSYGANOV E, IN PRESS J DIFF EQNS