Laguerre-Freud Equations Associated with the Hq-Semiclassical Forms of Class One

被引:6
作者
Zaatra, Mohamed [1 ]
机构
[1] Higher Inst Sci & Tech Waters Gabes, Univ Campus, Gabes 6072, Tunisia
关键词
Orthogonal polynomials; q-difference operator; H-q-semiclassical forms; ORTHOGONAL POLYNOMIALS; PRODUCT;
D O I
10.2298/FIL1819769Z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give the system of Laguerre-Freud equations for the recurrence coefficients beta(n), gamma(n+1), n >= 0 of orthogonal polynomials with respect to a H-q-semiclassical form (linear functional) of class one. The system is solved in the case when beta(n) = t(n-1) - t(n) and beta(n+1) = -t(n)(2) with t(n) not equal 0, n >= 0 and t(-1) = 0. There are essentially three canonical cases.
引用
收藏
页码:6769 / 6787
页数:19
相关论文
共 15 条
[1]  
Abdelkarim F., 1997, Results Math, V32, P1, DOI [10.1007/BF03322520, DOI 10.1007/BF03322520]
[2]  
[Anonymous], Thesis |
[3]   ON SEMICLASSICAL LINEAR FUNCTIONALS OF CLASS S=1 - CLASSIFICATION AND INTEGRAL-REPRESENTATIONS [J].
BELMEHDI, S .
INDAGATIONES MATHEMATICAE-NEW SERIES, 1992, 3 (03) :253-275
[4]  
Chihara T.S., 1978, INTRO ORTHOGONAL POL
[5]  
Ehsani D., 2008, Math. Nachr, V281, P916
[6]   The Symmetrical Hq-Semiclassical Orthogonal Polynomials of Class One [J].
Ghressi, Abdallah ;
Kheriji, Lotfi .
SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2009, 5
[7]   The product of a regular form by a polynomial generalized:: the case xu = λx2v [J].
Kamech, O. F. ;
Mejri, M. .
BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2008, 15 (02) :311-334
[8]  
Khriji L., 2003, METHODS APPL ANAL, V10, P387
[9]  
Khriji L., 2002, ACTA APPL MATH, V71, P49
[10]   The symmetric D ω -semi-classical orthogonal polynomials of class one [J].
Maroni, P. ;
Mejri, M. .
NUMERICAL ALGORITHMS, 2008, 49 (1-4) :251-282