Strong-coupling lattice QCD on anisotropic lattices

被引:11
作者
de Forcrand, Philippe [1 ,2 ]
Unger, Wolfgang [3 ]
Vairinhos, Helvio
机构
[1] Swiss Fed Inst Technol, Inst Theoret Phys, CH-8093 Zurich, Switzerland
[2] CERN, TH Dept, CH-1211 Geneva 23, Switzerland
[3] Univ Bielefeld, Fak Phys, Univ Str 25, D-33619 Bielefeld, Germany
基金
瑞士国家科学基金会;
关键词
CHIRAL PHASE-TRANSITION; FINITE-TEMPERATURE; GAUGE-THEORIES; STAGGERED FERMION; THERMODYNAMICS; DENSITY; SYMMETRY; SYSTEM;
D O I
10.1103/PhysRevD.97.034512
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Anisotropic lattice spacings are mandatory to reach the high temperatures where chiral symmetry is restored in the strong-coupling limit of lattice QCD. Here, we propose a simple criterion for the nonperturbative renormalization of the anisotropy coupling in strongly coupled SU(N-c) or U(N-c) lattice QCD with massless staggered fermions. We then compute the renormalized anisotropy, and the strong-coupling analogue of Karsch's coefficients (the running anisotropy), for N-c = 3. We achieve high precision by combining diagrammatic Monte Carlo and multihistogram reweighting techniques. We observe that the mean field prediction in the continuous time limit captures the nonperturbative scaling, but receives a large, previously neglected correction on the unit prefactor. Using our nonperturbative prescription in place of the mean field result, we observe large corrections of the same magnitude to the continuous time limit of the static baryon mass and of the location of the phase boundary associated with chiral symmetry restoration. In particular, the phase boundary, evaluated on different finite lattices, has a dramatically smaller dependence on the lattice time extent. We also estimate, as a byproduct, the pion decay constant and the chiral condensate of massless SU(3) QCD in the strong-coupling limit at zero temperature.
引用
收藏
页数:10
相关论文
共 31 条
[1]   Chiral limit of strongly coupled lattice gauge theories [J].
Adams, DH ;
Chandrasekharan, S .
NUCLEAR PHYSICS B, 2003, 662 (1-2) :220-246
[2]   Measuring the aspect ratio renormalization of anisotropic-lattice gluons [J].
Alford, M ;
Drummond, IT ;
Horgan, RR ;
Shanahan, H ;
Peardon, M .
PHYSICAL REVIEW D, 2001, 63 (07)
[3]   FLAVOR DEPENDENCE OF THE CHIRAL PHASE-TRANSITION IN STRONG-COUPLING QCD [J].
BILIC, N ;
KARSCH, F ;
REDLICH, K .
PHYSICAL REVIEW D, 1992, 45 (09) :3228-3236
[4]   Thermodynamics of SU(3) lattice gauge theory [J].
Boyd, G ;
Engels, J ;
Karsch, F ;
Laermann, E ;
Legeland, C ;
Lutgemeier, M ;
Petersson, B .
NUCLEAR PHYSICS B, 1996, 469 (03) :419-444
[5]   QCD ON ANISOTROPIC LATTICES [J].
BURGERS, G ;
KARSCH, F ;
NAKAMURA, A ;
STAMATESCU, IO .
NUCLEAR PHYSICS B, 1988, 304 (03) :587-600
[6]   Chiral limit of strongly coupled lattice QCD at finite temperatures [J].
Chandrasekharan, S ;
Jiang, FJ .
PHYSICAL REVIEW D, 2003, 68 (09)
[7]   CHIRAL-SYMMETRY RESTORATION IN LATTICE GAUGE-THEORIES AT FINITE TEMPERATURE [J].
DAMGAARD, PH ;
KAWAMOTO, N ;
SHIGEMOTO, K .
PHYSICAL REVIEW LETTERS, 1984, 53 (23) :2211-2214
[8]   STRONG COUPLING ANALYSIS OF THE CHIRAL PHASE-TRANSITION AT FINITE TEMPERATURE [J].
DAMGAARD, PH ;
KAWAMOTO, N ;
SHIGEMOTO, K .
NUCLEAR PHYSICS B, 1986, 264 (01) :1-28
[9]   EFFECTIVE LAGRANGIAN ANALYSIS OF THE CHIRAL PHASE-TRANSITION AT FINITE DENSITY [J].
DAMGAARD, PH ;
HOCHBERG, D ;
KAWAMOTO, N .
PHYSICS LETTERS B, 1985, 158 (03) :239-244
[10]   't Hooft loop in SU(2) Yang-Mills theory [J].
de Forcrand, P ;
D'Elia, M ;
Pepe, M .
PHYSICAL REVIEW LETTERS, 2001, 86 (08) :1438-1441