Orthogonal polynomials and the finite Toda lattice

被引:4
作者
Kasman, A
机构
关键词
D O I
10.1063/1.531840
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The choice of a finitely supported distribution is viewed as a degenerate bilinear form on the polynomials in the spectral parameter z and the matrix representing multiplication by z in terms of an orthogonal basis is constructed. It is then shown that the same induced time dependence for finitely supported distributions which gives the ith KP flow under the dual isomorphism induces the ith flow of the Toda hierarchy on the matrix. The corresponding solution is an N particle, finite, nonperiodic Toda solution where N is the cardinality of the support of c plus the sum of the orders of the highest derivative taken at each point. (C) 1997 American Institute of Physics.
引用
收藏
页码:247 / 254
页数:8
相关论文
共 50 条
[31]   Duality of orthogonal polynomials on a finite set [J].
Borodin, A .
JOURNAL OF STATISTICAL PHYSICS, 2002, 109 (5-6) :1109-1120
[32]   The Pfaff lattice and skew-orthogonal polynomials [J].
Adler, M ;
Horozov, E ;
van Moerbeke, P .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 1999, 1999 (11) :569-588
[33]   Christoffel Transformations for Matrix Orthogonal Polynomials in the Real Line and the non-Abelian 2D Toda Lattice Hierarchy [J].
Alvarez-Fernandez, Carlos ;
Ariznabarreta, Gerardo ;
Carlos Garcia-Ardila, Juan ;
Manas, Manuel ;
Marcellan, Francisco .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2017, 2017 (05) :1285-1341
[34]   Representing by Orthogonal Polynomials for Sums of Finite Products of Fubini Polynomials [J].
Kim, Dae San ;
Dolgy, Dmitry V. ;
Kim, Dojin ;
Kim, Taekyun .
MATHEMATICS, 2019, 7 (04)
[35]   A TAU-FUNCTION OF THE FINITE NONPERIODIC TODA LATTICE [J].
NAKAMURA, Y .
PHYSICS LETTERS A, 1994, 195 (5-6) :346-350
[36]   INTEGRABILITY CONDITION AND FINITE-PERIODIC TODA LATTICE [J].
OKUBO, S .
JOURNAL OF MATHEMATICAL PHYSICS, 1990, 31 (08) :1919-1928
[37]   The multicomponent 2D Toda hierarchy: generalized matrix orthogonal polynomials, multiple orthogonal polynomials and Riemann-Hilbert problems [J].
Alvarez-Fernandez, Carlos ;
Fidalgo, Ulises ;
Manas, Manuel .
INVERSE PROBLEMS, 2010, 26 (05)
[38]   String-orthogonal polynomials, string equations, and 2-Toda symmetries [J].
Adler, M ;
VanMoerbeke, P .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1997, 50 (03) :241-290
[39]   Matrix orthogonal Laurent polynomials on the unit circle and Toda type integrable systems [J].
Ariznabarreta, Gerardo ;
Manas, Manuel .
ADVANCES IN MATHEMATICS, 2014, 264 :396-463
[40]   Hermite-Pade Approximation, Multiple Orthogonal Polynomials, and Multidimensional Toda Equations [J].
Doliwa, Adam .
GEOMETRIC METHODS IN PHYSICS XL, WGMP 2022, 2024, :251-274