Orthogonal polynomials and the finite Toda lattice

被引:4
作者
Kasman, A
机构
关键词
D O I
10.1063/1.531840
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The choice of a finitely supported distribution is viewed as a degenerate bilinear form on the polynomials in the spectral parameter z and the matrix representing multiplication by z in terms of an orthogonal basis is constructed. It is then shown that the same induced time dependence for finitely supported distributions which gives the ith KP flow under the dual isomorphism induces the ith flow of the Toda hierarchy on the matrix. The corresponding solution is an N particle, finite, nonperiodic Toda solution where N is the cardinality of the support of c plus the sum of the orders of the highest derivative taken at each point. (C) 1997 American Institute of Physics.
引用
收藏
页码:247 / 254
页数:8
相关论文
共 50 条
[21]   Orthogonal confluent hypergeometric lattice polynomials [J].
Elliott, CJ .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2006, 193 (01) :89-108
[22]   Orthogonal Polynomials on a Bi-lattice [J].
Christophe Smet ;
Walter Van Assche .
Constructive Approximation, 2012, 36 :215-242
[23]   Cumulants, lattice paths, and orthogonal polynomials [J].
Lehner, F .
DISCRETE MATHEMATICS, 2003, 270 (1-3) :177-191
[24]   Finite Toda lattice and classical moment problem [J].
Mikhaylov, A. S. ;
Mikhaylov, V. S. .
NANOSYSTEMS-PHYSICS CHEMISTRY MATHEMATICS, 2020, 11 (01) :25-29
[25]   ANOTHER DERIVATION OF SOLUTION OF FINITE TODA LATTICE [J].
SAWADA, K ;
KOTERA, T .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1978, 44 (02) :659-662
[26]   EXCITATION SPECTRUM OF THE TODA LATTICE FOR FINITE TEMPERATURES [J].
GRUNERBAUER, P ;
MERTENS, FG .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1988, 70 (04) :435-447
[27]   A class of complex solutions to the finite Toda lattice [J].
Guseinov, Gusein Sh. .
MATHEMATICAL AND COMPUTER MODELLING, 2013, 57 (5-6) :1190-1202
[28]   Finite Orthogonal M Matrix Polynomials [J].
Lekesiz, Esra Guldogan .
SYMMETRY-BASEL, 2025, 17 (07)
[29]   Duality of Orthogonal Polynomials on a Finite Set [J].
Alexei Borodin .
Journal of Statistical Physics, 2002, 109 :1109-1120
[30]   ORTHOGONAL SYSTEMS OF POLYNOMIALS IN FINITE FIELDS [J].
NIEDERREITER, H .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 28 (02) :415-+