Towards Continuous Streamflow Monitoring with Time-Lapse Cameras and Deep Learning

被引:3
|
作者
Gupta, Amrita [1 ]
Chang, Tony [1 ]
Walker, Jeffrey D. [2 ]
Letcher, Benjamin H. [3 ]
机构
[1] Conservat Sci Partners, Truckee, CA 96161 USA
[2] Walker Environm Res LLC, Brunswick, ME USA
[3] US Geol Survey, Eastern Ecol Sci Ctr, Turners Falls, MS USA
来源
PROCEEDINGS OF THE 4TH ACM SIGCAS/SIGCHI CONFERENCE ON COMPUTING AND SUSTAINABLE SOCIETIES, COMPASS'22 | 2022年
关键词
computational sustainability; computer vision; neural networks; learning to rank; weakly supervised learning; FLOW DURATION CURVES; PREDICTION; DROUGHT;
D O I
10.1145/3530190.3534805
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Effective water resources management depends on monitoring the volume of water flowing through streams and rivers, but collecting continuous discharge measurements using traditional streamflow gages is prohibitively expensive. Time-lapse cameras offer a low-cost option for streamflow monitoring, but training models for predicting streamflow directly from images requires streamflow data to use as labels, which are often unavailable. We address this data gap by proposing the alternative task of Streamflow Rank Estimation (SRE), in which the goal is to predict relative measures of streamflow such as percentile rank rather than absolute flow. In particular, we use a learning-to-rank framework to train SRE models using pairs of stream images ranked in order of discharge by an annotator, obviating the need for discharge training data and thus facilitating monitoring streamflow conditions at streams without gages. We also demonstrate a technique for converting SRE model predictions to stream discharge estimates given an estimated streamflow distribution. Using data and images from six small US streams, we compare the performance of SRE with conventional regression models trained to predict absolute discharge. Our results show that SRE performs nearly as well as regression models on relative flow prediction. Further, we observe that the accuracy of absolute discharge estimates obtained by mapping SRE model predictions through a discharge distribution largely depends on how well the assumed discharge distribution matches the field observed data.
引用
收藏
页码:353 / 363
页数:11
相关论文
共 50 条
  • [21] Towards Low-Cost Pavement Condition Health Monitoring and Analysis Using Deep Learning
    Roberts, Ronald
    Giancontieri, Gaspare
    Inzerillo, Laura
    Di Mino, Gaetano
    APPLIED SCIENCES-BASEL, 2020, 10 (01):
  • [22] Real-time monitoring of high-power disk laser welding statuses based on deep learning framework
    Zhang, Yanxi
    You, Deyong
    Gao, Xiangdong
    Wang, Congyi
    Li, Yangjin
    Gao, Perry P.
    JOURNAL OF INTELLIGENT MANUFACTURING, 2020, 31 (04) : 799 - 814
  • [23] Real-time deep learning-based market demand forecasting and monitoring
    Guo, Yuan
    Luo, Yuanwei
    He, Jingjun
    He, Yun
    COMPUTERS & ELECTRICAL ENGINEERING, 2022, 100
  • [24] Platform for precise, personalised glucose forecasting through continuous glucose and physical activity monitoring and deep learning
    Kalita, Deepjyoti
    Sharma, Hrishita
    Panda, Jayanta Kumar
    Mirza, Khalid B.
    MEDICAL ENGINEERING & PHYSICS, 2024, 132
  • [25] Application of Time Series Data Anomaly Detection Based on Deep Learning in Continuous Casting Process
    Zhou, Yujie
    Xu, Ke
    He, Fei
    Zhang, Zhiyan
    ISIJ INTERNATIONAL, 2022, 62 (04) : 689 - 698
  • [26] Smart seru production system for Industry 4.0: a conceptual model based on deep learning for real-time monitoring and controlling
    Torkul, Orhan
    Selvi, Ihsan Hakan
    Sisci, Merve
    INTERNATIONAL JOURNAL OF COMPUTER INTEGRATED MANUFACTURING, 2024, 37 (04) : 385 - 407
  • [27] Towards Real-Time Deep Learning-Based Network Intrusion Detection on FPGA
    Le Jeune, Laurens
    Goedeme, Toon
    Mentens, Nele
    APPLIED CRYPTOGRAPHY AND NETWORK SECURITY WORKSHOPS, ACNS 2021, 2021, 12809 : 133 - 150
  • [28] Real-time Traffic Monitoring System based on Deep Learning and YOLOv8
    Neamah, Saif B.
    Karim, Abdulamir A.
    ARO-THE SCIENTIFIC JOURNAL OF KOYA UNIVERSITY, 2023, 11 (02): : 137 - 150
  • [29] Internet of things-enabled real-time health monitoring system using deep learning
    Wu, Xingdong
    Liu, Chao
    Wang, Lijun
    Bilal, Muhammad
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (20) : 14565 - 14576
  • [30] Deep Learning-Based Computer Vision for Real-Time Intravenous Drip Infusion Monitoring
    Giaquinto, Nicola
    Scarpetta, Marco
    Spadavecchia, Maurizio
    Andria, Gregorio
    IEEE SENSORS JOURNAL, 2021, 21 (13) : 14148 - 14154