The Terminal Wiener Index of Trees with Diameter or Maximum Degree

被引:0
作者
Chen, Ya-Hong [1 ,2 ,3 ]
Zhang, Xiao-Dong [1 ,2 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Math, Shanghai 200240, Peoples R China
[2] Shanghai Jiao Tong Univ, MOE LSC, Shanghai 200240, Peoples R China
[3] Lishui Univ, Dept Math, Lishui 323000, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Terminal Wiener index; Tree; Diameter; Maximum degree; STAR-LIKE GRAPHS; REPRESENTATION; DISTANCES;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The terminal Wiener index of a tree is the sum of distances for all pairs of pendent vertices, which recently arises in the study of phylogenetic tree reconstruction and the neighborhood of trees. This paper presents a sharp upper and lower bounds for the terminal Wiener index in terms of its order and diameter and characterizes all extremal trees which attain these bounds. In addition, we investigate the properties of extremal trees which attain the maximum terminal Wiener index among all trees of order n with fixed maximum degree.
引用
收藏
页码:353 / 367
页数:15
相关论文
共 21 条
[1]  
[Anonymous], ANN COMB
[2]  
Babujee B. Baskar, 2013, INT J MATH SCI, V7, P39
[3]  
Chen YH, 2013, MATCH-COMMUN MATH CO, V70, P591
[4]   Equiseparability on terminal Wiener index [J].
Deng, Xiaotie ;
Zhang, Jie .
APPLIED MATHEMATICS LETTERS, 2012, 25 (03) :580-585
[5]   Wiener index of trees: Theory and applications [J].
Dobrynin, AA ;
Entringer, R ;
Gutman, I .
ACTA APPLICANDAE MATHEMATICAE, 2001, 66 (03) :211-249
[6]  
Gutman I, 1997, DISCRETE APPL MATH, V80, P1
[7]  
Gutman I., 2013, J MATH CHEM, V4, P77
[8]   Terminal Wiener index [J].
Gutman, Ivan ;
Furtula, Boris ;
Petrovic, Miroslav .
JOURNAL OF MATHEMATICAL CHEMISTRY, 2009, 46 (02) :522-531
[9]  
Heydari A., 2010, KRAGUJEVAC J SCI, V32, P57
[10]  
Horvat B, 2008, MATCH-COMMUN MATH CO, V60, P493