A conservative stabilized finite element method for the magneto-hydrodynamic equations

被引:0
作者
Ben Salah, N
Soulaimani, A
Habashi, WG
Fortin, M
机构
[1] Concordia Univ, Dept Mech Engn, CFD Lab, Montreal, PQ H3G 1M8, Canada
[2] Univ Quebec, Ecole Technol Super, Dept Genie Mecan, Montreal, PQ H3C 1K3, Canada
[3] Univ Laval, Dept Math & Stat, Ste Foy, PQ G1K 7P4, Canada
关键词
finite element method; MHD equations; conservative formulation; stabilization techniques; Hartmann flow; MHD Rayleigh flow; numerical solutions;
D O I
10.1002/(SICI)1097-0363(19990315)29:5<535::AID-FLD799>3.3.CO;2-4
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This work presents a finite element solution of the 3D magneto-hydrodynamics equations. The formulation takes explicitly into account the local conservation of the magnetic field, giving rise to a conservative formulation and introducing a new scalar variable. A stabilization technique is used in order to allow equal linear interpolation on tetrahedral elements of all the variables. Numerical tests are performed in order to assess the stability and the accuracy of the resulting methods. The convergence rates are calculated for different stabilization parameters. Well-known MHD benchmark tests are calculated. Results show good agreement with analytical solutions. Copyright (C) 1999 John Wiley & Sons, Ltd.
引用
收藏
页码:535 / 554
页数:20
相关论文
共 24 条
[1]   A 2ND-ORDER FINITE-ELEMENT METHOD FOR THE SOLUTION OF THE TRANSONIC EULER AND NAVIER-STOKES EQUATIONS [J].
BARUZZI, GS ;
HABASHI, WG ;
GUEVREMONT, JG ;
HAFEZ, MM .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 1995, 20 (8-9) :671-693
[2]  
BENSALAH N, 1997, ADV COMPUTATIONAL EN, P269
[3]   NUMERICAL MODELING OF ELECTROMAGNETIC CASTING PROCESSES [J].
BESSON, O ;
BOURGEOIS, J ;
CHEVALIER, PA ;
RAPPAZ, J ;
TOUZANI, R .
JOURNAL OF COMPUTATIONAL PHYSICS, 1991, 92 (02) :482-507
[4]   ON THE USE OF THE MAGNETIC VECTOR POTENTIAL IN THE FINITE-ELEMENT ANALYSIS OF 3-DIMENSIONAL EDDY CURRENTS [J].
BIRO, O ;
PREIS, K .
IEEE TRANSACTIONS ON MAGNETICS, 1989, 25 (04) :3145-3159
[5]  
Brezis H., 1999, Analyse fonctionnelle: Theorie et applications
[6]  
Brezzi F., 1984, NOTES NUMERICAL FLUI, P11, DOI DOI 10.1007/978-3-663-14169-3_2
[7]  
Brezzi F., 1991, Springer Series in Computational Mathematics, DOI 10. 1007/978-1-4612- 3172-1.
[8]  
Conraths HJ, 1996, INT J NUMER METH ENG, V39, P141, DOI 10.1002/(SICI)1097-0207(19960115)39:1<141::AID-NME843>3.0.CO
[9]  
2-K