The Shintani cocycle -: II.: Partial ζ-functions, cohomologous cocycles and p-adic interpolation

被引:9
作者
Solomon, D [1 ]
机构
[1] Univ London Kings Coll, Dept Math, London WC2R 2LS, England
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1006/jnth.1998.2332
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The "Shintani Cocyle" Phi(r) is further investigated under three headings. Firstly, a precise link with partial zeta-values is given and non-triviality results are deduced for cocycles specializing Phi(r). Secondly, a cohomologous "deformation" Psi(infinity) of Phi(infinity) (related to cocycles of Scezch and Stevens) is studied by means of explicit formulae. Thirdly, another deformation Y-infinity((v)) is considered item a p-adic viewpoint and shown to be interpolable. Applications are given to the construction of p-adic partial zeta-functions. (C) 1999 Academic Press.
引用
收藏
页码:53 / 108
页数:56
相关论文
共 21 条
[1]   NEGATIVE INTEGRAL VALUES OF ZETA-FUNCTIONS AND P-ADIC ZETA-FUNCTIONS [J].
CASSOUNOGUES, P .
INVENTIONES MATHEMATICAE, 1979, 51 (01) :29-59
[2]   P-ADIC L-FUNCTIONS OVER REAL QUADRATIC FIELDS [J].
COATES, J ;
SINNOTT, W .
INVENTIONES MATHEMATICAE, 1974, 25 (3-4) :253-279
[3]  
Coates J., 1977, P LOND MATH SOC, V34, P365
[4]  
HALBRITTER U, 1985, RESULTS MATH, V8, P21
[5]  
Hall RR, 1995, ACTA ARITH, V73, P389
[6]  
HAYES DR, 1990, EXPO MATH, V8
[7]  
HIDA H, 1993, ELEMENTARY THEORY L
[8]  
HU S, IN PRESS HIGHER DIME
[9]  
Hu S. B., 1997, THESIS U PENNSYLVANI
[10]  
KATZ N, 1988, MATH ANN, V255, P33