On prediction rate in partial functional linear regression

被引:35
|
作者
Shin, Hyejin [1 ]
Lee, Myung Hee [2 ]
机构
[1] Seoul Natl Univ, Seoul 151747, South Korea
[2] Colorado State Univ, Ft Collins, CO 80523 USA
关键词
Functional linear regression; Mean squared prediction error; Convergence rate; Asymptotic normality; STATISTICAL VIEW; ESTIMATORS; CONVERGENCE; MODELS;
D O I
10.1016/j.jmva.2011.06.011
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider a prediction of a scalar variable based on both a function-valued variable and a finite number of real-valued variables. For the estimation of the regression parameters, which include the infinite dimensional function as well as the slope parameters for the real-valued variables, it is inevitable to impose some kind of regularization. We consider two different approaches, which are shown to achieve the same convergence rate of the mean squared prediction error under respective assumptions. One is based on functional principal components regression (FPCR) and the alternative is functional ridge regression (FRR) based on Tikhonov regularization. Also, numerical studies are carried out for a simulation data and a real data. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:93 / 106
页数:14
相关论文
共 50 条
  • [1] Partial functional linear regression
    Shin, Hyejin
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2009, 139 (10) : 3405 - 3418
  • [2] Confidence and prediction intervals in semi-functional partial linear regression
    Rana, Paula
    Aneiros, German
    Vieu, Philippe
    Vilar, Juan
    FUNCTIONAL STATISTICS AND RELATED FIELDS, 2017, : 217 - 224
  • [3] Prediction in functional linear regression
    Cai, T. Tony
    Hall, Peter
    ANNALS OF STATISTICS, 2006, 34 (05): : 2159 - 2179
  • [4] Partial functional linear quantile regression
    Tang QingGuo
    Cheng LongSheng
    SCIENCE CHINA-MATHEMATICS, 2014, 57 (12) : 2589 - 2608
  • [5] Partial functional linear quantile regression
    TANG QingGuo
    CHENG LongSheng
    ScienceChina(Mathematics), 2014, 57 (12) : 2589 - 2608
  • [6] Partial functional linear quantile regression
    QingGuo Tang
    LongSheng Cheng
    Science China Mathematics, 2014, 57 : 2589 - 2608
  • [7] On prediction error in functional linear regression
    Apanasovich, Tatiyana V.
    Goldstein, Edward
    STATISTICS & PROBABILITY LETTERS, 2008, 78 (13) : 1807 - 1810
  • [8] Multivariate functional linear regression and prediction
    Chiou, Jeng-Min
    Yang, Ya-Fang
    Chen, Yu-Ting
    JOURNAL OF MULTIVARIATE ANALYSIS, 2016, 146 : 301 - 312
  • [9] INFERENCE FOR GENERALIZED PARTIAL FUNCTIONAL LINEAR REGRESSION
    Li, Ting
    Zhu, Zhongyi
    STATISTICA SINICA, 2020, 30 (03) : 1379 - 1397
  • [10] Functional Partial Linear Regression with Autoregressive Errors
    Chen, Longzhou
    Wang, Guochang
    Zhang, Baoxue
    COMMUNICATIONS IN MATHEMATICS AND STATISTICS, 2025,