A thermal infrared instrument onboard a geostationary platform for CO and O3 measurements in the lowermost troposphere: Observing System Simulation Experiments (OSSE)

被引:28
作者
Claeyman, M. [1 ,2 ]
Attie, J-L [1 ,2 ]
Peuch, V-H [2 ]
El Amraoui, L. [2 ]
Lahoz, W. A. [2 ,3 ]
Josse, B. [2 ]
Joly, M. [2 ]
Barre, J. [2 ]
Ricaud, P. [1 ]
Massart, S. [4 ]
Piacentini, A. [4 ]
von Clarmann, T. [5 ]
Hoepfner, M. [5 ]
Orphal, J. [5 ]
Flaud, J-M [6 ]
Edwards, D. P. [7 ]
机构
[1] Univ Toulouse, Lab Aerol, UMR 5560, CNRS,INSU, Toulouse, France
[2] CNRS Meteo France & Toulouse, CNRM GAME, URA1357, Toulouse, France
[3] NILU, N-2027 Kjeller, Norway
[4] CERFACS, F-31057 Toulouse, France
[5] Forschungszentrum Karlsruhe, Inst Meteorol & Klimaforsch, D-76021 Karlsruhe, Germany
[6] Univ Paris Est, Lab Interuniv Syst Atmospher, UMR7583, CNRS, Creteil, France
[7] Natl Ctr Atmospher Res, Boulder, CO 80307 USA
关键词
EXPLORER GEOTROPE MISSION; CHEMISTRY-TRANSPORT MODEL; AIR-QUALITY; ATMOSPHERIC COMPOSITION; DATA ASSIMILATION; OZONE; POLLUTION; RETRIEVALS; OBJECTIVES; EMISSIONS;
D O I
10.5194/amt-4-1637-2011
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
This paper presents observing system simulation experiments (OSSEs) to compare the relative capabilities of two geostationary thermal infrared (TIR) instruments to measure ozone (O-3) and carbon monoxide (CO) for monitoring air quality (AQ) over Europe. The primary motivation of this study is to use OSSEs to assess how these infrared instruments can constrain different errors affecting AQ hindcasts and forecasts (emissions, meteorology, initial condition and the 3 parameters together). The first instrument (GEO-TIR) has a configuration optimized to monitor O-3 and CO in the lowermost troposphere (LmT; defined to be the atmosphere between the surface and 3 km), and the second instrument (GEO-TIR2) is designed to monitor temperature and humidity. Both instruments measure radiances in the same spectral TIR band. Results show that GEO-TIR could have a significant impact (GEO-TIR is closer to the reference atmosphere than GEO-TIR2) on the analyses of O-3 and CO LmT column. The information added by the measurements for both instruments is mainly over the Mediterranean Basin and some impact can be found over the Atlantic Ocean and Northern Europe. The impact of GEO-TIR is mainly above 1 km for O-3 and CO but can also improve the surface analyses for CO. The analyses of GEO-TIR2 show low impact for O-3 LmT column but a significant impact (although still lower than for GEO-TIR) for CO above 1 km. The results of this study indicate the beneficial impact from an infrared instrument (GEO-TIR) with a capability for monitoring O-3 and CO concentrations in the LmT, and quantify the value of this information for constraining AQ models.
引用
收藏
页码:1637 / 1661
页数:25
相关论文
共 70 条
[1]  
AKIMOTO H, 2008, 2360001 JSAC JAMSTEC
[2]  
ATLAS RM, 1997, CGC WMO WORSH GEN 7
[3]  
Bechtold P, 2001, Q J ROY METEOR SOC, V127, P869, DOI 10.1002/qj.49712757309
[4]  
BOVENSMANN H, 2005, OPERATIONAL ATMOSPHE
[5]   Air quality of Prague: traffic as a main pollution source [J].
Branis, Martin .
ENVIRONMENTAL MONITORING AND ASSESSMENT, 2009, 156 (1-4) :377-390
[6]   Air pollution and health [J].
Brunekreef, B ;
Holgate, ST .
LANCET, 2002, 360 (9341) :1233-1242
[7]   PALM:: a computational framework for assembling high-performance computing applications [J].
Buis, S ;
Piacentini, A ;
Déclat, D .
CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2006, 18 (02) :231-245
[8]   The geostationary tropospheric pollution explorer (GeoTROPE) mission:: objectives, requirements and mission concept [J].
Burrows, JP ;
Bovensmann, H ;
Bergametti, G ;
Flaud, JM ;
Orphal, J ;
Noël, S ;
Monks, PS ;
Corlett, GK ;
Goede, AP ;
von Clarmann, T ;
Steck, T ;
Fischer, F ;
Friedl-Vallon, F .
TRACE CONSTITUENTS IN THE TROPOSPHERE AND LOWER STRATOSPHERE, 2004, 34 (04) :682-687
[9]   A geostationary thermal infrared sensor to monitor the lowermost troposphere: O3 and CO retrieval studies [J].
Claeyman, M. ;
Attie, J-L. ;
Peuch, V-H. ;
El Amraoui, L. ;
Lahoz, W. A. ;
Josse, B. ;
Ricaud, P. ;
von Clarmann, T. ;
Hoepfner, M. ;
Orphal, J. ;
Flaud, J-M. ;
Edwards, D. P. ;
Chance, K. ;
Liu, X. ;
Pasternak, F. ;
Cantie, R. .
ATMOSPHERIC MEASUREMENT TECHNIQUES, 2011, 4 (02) :297-317
[10]   A linear CO chemistry parameterization in a chemistry-transport model: evaluation and application to data assimilation [J].
Claeyman, M. ;
Attie, J. -L. ;
El Amraoui, L. ;
Cariolle, D. ;
Peuch, V. -H. ;
Teyssedre, H. ;
Josse, B. ;
Ricaud, P. ;
Massart, S. ;
Piacentini, A. ;
Cammas, J. -P. ;
Livesey, N. J. ;
Pumphrey, H. C. ;
Edwards, D. P. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2010, 10 (13) :6097-6115