In Situ Ratiometric Quantitative Tracing of Intracellular Leucine Aminopeptidase Activity via an Activatable Near-Infrared Fluorescent. Probe

被引:85
作者
Gu, Kaizhi [1 ,2 ]
Liu, Yajing [3 ]
Guo, Zhiqian [1 ,2 ,4 ]
Lian, Cheng [1 ,2 ]
Yan, Chenxu [1 ,2 ]
Shi, Ping [3 ]
Tian, He [1 ,2 ]
Zhu, Wei-Hong [1 ,2 ]
机构
[1] East China Univ Sci & Technol, Key Lab Adv Mat, Sch Chem & Mol Engn, Shanghai 200237, Peoples R China
[2] East China Univ Sci & Technol, Inst Fine Chem, Sch Chem & Mol Engn, Shanghai Key Lab Funct Mat Chem,Collaborat Innova, Shanghai 200237, Peoples R China
[3] East China Univ Sci & Technol, State Key Lab Bioreactor Engn, Shanghai 200237, Peoples R China
[4] Dalian Univ Technol, State Key Lab Fine Chem, Dalian 116024, Peoples R China
关键词
near-infrared; fluorescent probe; ratiometric; in situ; leucine aminopeptidase; LIVING CELLS; RATIONAL DESIGN; RECENT PROGRESS; FAR-RED; VIVO; GLUTATHIONE; TRACKING; DICYANOMETHYLENE-4H-PYRAN; CHEMOSENSORS; NANOPROBE;
D O I
10.1021/acsami.6b10238
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Leucine aminopeptidase (LAP), one of the important proteolytic enzymes, is intertwined with the progress of many pathological disorders as a well-defined biomarker. To explore fluorescent aminopeptidase probe for quantitative detection of LAP distribution and dynamic changes, herein we report a LAP-targeting near-infrared (NIR) fluorescent probe (DCM-Leu) for ratiometric quantitative trapping of LAP activity in different kinds of living cells. DCM-Leu is composed of a NIR-emitting fluorophore (DCM) as a reporter and L-leucine as a triggered moiety, which are linked together by an amide bond specific for LAP cleavage. High contrast on the ratiometric NIR fluorescence signal can be achieved in response to LAP activity, thus enabling quantification of endogenous LAP with "build-in calibration" as well as minimal background interference. Its ratiometric NIR signal can be blocked in a dose-dependent manner by bestatin, an LAP inhibitor, indicating that the alteration of endogenous LAP activity results in these obviously fluorescent signal responses. It is worth noting that DCM-Leu features striking characteristics such as a large Stokes shift (similar to 205 nm), superior selectivity, and strong photostability responding to LAP. Impressively, not only did we successfully exemplify DCM-Leu in situ ratiometric trapping and quantification of endogenous LAP activity in various types of living cells, but also, with the aid of three-dimensional confocal imaging, the intracellular LAP distribution is clearly observed from different perspectives for the first time, owing to the high signal-to-noise of ratiometric NIR. fluorescent response. Collectively, these results demonstrate preclinical potential value of DCM-Leu serving as a useful NIR fluorescent probe for early detection of LAP-associated disease, and screening inhibitor.
引用
收藏
页码:26622 / 26629
页数:8
相关论文
共 50 条
  • [21] A FRET-based near-infrared ratiometric fluorescent probe for detection of mitochondria biothiol
    Wang, Lu
    Wang, Jianbo
    Xia, Shuai
    Wang, Xinxin
    Yu, Yating
    Zhou, Hongwei
    Liu, Haiying
    TALANTA, 2020, 219 (219)
  • [22] Engineering a highly selective leucine aminopeptidase near-infrared fluorescence probe for early diagnosis of diabetic nephropathy
    Liu, Yin
    Liu, Xinru
    Liu, Qian
    Li, Donghong
    Cheng, Dan
    He, Longwei
    SENSORS AND ACTUATORS B-CHEMICAL, 2024, 402
  • [23] Visualize intracellular β-galactosidase using an asymmetric near-infrared fluorescent probe with a large Stokes shift
    Chen, Shijun
    Ma, Xiaodong
    Wang, Haijie
    Wang, Lin
    Wu, Yuanyuan
    Wang, Yaping
    Li, Yiyi
    Fan, Wenkang
    Niu, Caoyuan
    Hou, Shicong
    ANALYTICA CHIMICA ACTA, 2023, 1272
  • [24] Ratiometric Imaging of MMP-2 Activity Facilitates Tumor Detection Using Activatable Near-Infrared Fluorescent Semiconducting Polymer Nanoparticles
    Zeng, Wenhui
    Wu, Luyan
    Sun, Yidan
    Wang, Yuqi
    Wang, Jinfang
    Ye, Deju
    SMALL, 2021, 17 (36)
  • [25] A Near-Infrared Ratiometric Fluorescent Probe for Highly Selective Recognition and Bioimaging of Cysteine
    Zhang, Xuan
    Zhang, Li
    Ma, Wei-Wei
    Zhou, Yong
    Lu, Zhen-Ni
    Xu, Suying
    FRONTIERS IN CHEMISTRY, 2019, 7
  • [26] A near-infrared fluorescent probe for the ratiometric detection and living cell imaging of β-galactosidase
    Xueyan Zhang
    Xiangzhu Chen
    Yuanyuan Zhang
    Kaizheng Liu
    Hongjing Shen
    En Zheng
    Xiaoqian Huang
    Shicong Hou
    Xiaodong Ma
    Analytical and Bioanalytical Chemistry, 2019, 411 : 7957 - 7966
  • [27] A novel ratiometric near-infrared fluorescent probe for monitoring cyanide in food samples
    Long, Lingliang
    Han, Yuanyuan
    Yuan, Xiangqi
    Cao, Siyu
    Liu, Weiguo
    Chen, Qian
    Wang, Kun
    Han, Zhixiang
    FOOD CHEMISTRY, 2020, 331
  • [28] A near-infrared fluorescent probe for the ratiometric detection and living cell imaging of β-galactosidase
    Zhang, Xueyan
    Chen, Xiangzhu
    Zhang, Yuanyuan
    Liu, Kaizheng
    Shen, Hongjing
    Zheng, En
    Huang, Xiaoqian
    Hou, Shicong
    Ma, Xiaodong
    ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2019, 411 (30) : 7957 - 7966
  • [29] Design of a ratiometric near-infrared fluorescent probe with double excitation for hydrazine detection in vitro and in vivo
    Zhang, Tengteng
    Lai, Youbo
    Lin, Weiying
    SCIENCE OF THE TOTAL ENVIRONMENT, 2022, 837
  • [30] A Ratiometric and near-Infrared Fluorescent Probe for Imaging Cu2+ in Living Cells and Animals
    Rui Guo
    Qiuan Wang
    Weiying Lin
    Journal of Fluorescence, 2017, 27 : 1655 - 1660