Functional, Anatomical, and Morphological Networks Highlight the Role of Basal Ganglia-Thalamus-Cortex Circuits in Schizophrenia

被引:40
作者
Zhao, Wei [1 ]
Guo, Shuixia [1 ,2 ]
Linli, Zeqiang [1 ]
Yang, Albert C. [3 ,4 ]
Lin, Ching-Po [5 ,6 ,7 ]
Tsai, Shih-Jen [4 ,8 ,9 ]
机构
[1] Hunan Normal Univ, Sch Math & Stat, MOE LCSM, Changsha, Peoples R China
[2] Hunan Normal Univ, Sch Med, Key Lab Mol Epidemiol Hunan Prov, Changsha, Peoples R China
[3] Harvard Med Sch, Beth Israel Deaconess Med Ctr, Div Interdisciplinary Med & Biotechnol, Boston, MA 02115 USA
[4] Natl Yang Ming Univ, Inst Brain Sci, Taipei, Taiwan
[5] Natl Yang Ming Univ, Brain Res Ctr, Taipei, Taiwan
[6] Natl Yang Ming Univ, Inst Neurosci, Taipei, Taiwan
[7] Fudan Univ, Inst Sci & Technol Brain Inspired Intelligence, Shanghai, Peoples R China
[8] Taipei Vet Gen Hosp, Dept Psychiat, Taipei, Taiwan
[9] Natl Yang Ming Univ, Sch Med, Div Psychiat, Taipei, Taiwan
基金
中国国家自然科学基金;
关键词
schizophrenia; functional network; structural network; morphological network; basal ganglia-thalamus-cortex circuits; STRUCTURAL BRAIN NETWORKS; CONNECTIVITY; RISK; DYSCONNECTIVITY; 1ST-EPISODE; PHENOTYPE; MACHINE; DISEASE;
D O I
10.1093/schbul/sbz062
中图分类号
R749 [精神病学];
学科分类号
100205 ;
摘要
Evidence from electrophysiological, functional, and structural research suggests that abnormal brain connectivity plays an important role in the pathophysiology of schizophrenia. However, most previous studies have focused on single modalities only, each of which is associated with its own limitations. Multimodal combinations can more effectively utilize various information, but previous multimodal research mostly focuses on extracting local features, rather than carrying out research based on network perspective. This study included 135 patients with schizophrenia and 148 sex- and age-matched healthy controls. Functional magnetic resonance imaging, diffusion tensor imaging, and structural magnetic resonance imaging data were used to construct the functional, anatomical, and morphological networks of each participant, respectively. These networks were used in combination with machine learning to identify more consistent biomarkers of brain connectivity and explore the relationships between different modalities. We found that although each modality had divergent connectivity biomarkers, the convergent pattern was that all were mostly located within the basal ganglia-thalamus-cortex circuit. Furthermore, using the biomarkers of these 3 modalities as a feature yielded the highest classification accuracy (91.75%, relative to a single modality), suggesting that the combination of multiple modalities could be effectively utilized to obtain complementary information regarding different mode networks; furthermore, this information could help distinguish patients. These findings provide direct evidence for the disconnection hypothesis of schizophrenia, suggesting that abnormalities in the basal ganglia-thalamus-cortex circuit can be used as a biomarker of schizophrenia.
引用
收藏
页码:422 / 431
页数:10
相关论文
共 63 条
[11]   Disturbed grey matter coupling in schizophrenia [J].
Collin, Guusje ;
de Reus, Marcel A. ;
Cahn, Wiepke ;
Pol, Hilleke E. Hulshoff ;
Kahn, Rene S. ;
van den Heuvel, Martijn P. .
EUROPEAN NEUROPSYCHOPHARMACOLOGY, 2013, 23 (01) :46-54
[12]   Canonical Correlation Analysis for Feature-Based Fusion of Biomedical Imaging Modalities and Its Application to Detection of Associative Networks in Schizophrenia [J].
Correa, Nicolle M. ;
Li, Yi-Ou ;
Adali, Tuelay ;
Calhoun, Vince D. .
IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2008, 2 (06) :998-1007
[13]   Disrupted white matter connectivity underlying developmental dyslexia: A machine learning approach [J].
Cui, Zaixu ;
Xia, Zhichao ;
Su, Mengmeng ;
Shu, Hua ;
Gong, Gaolang .
HUMAN BRAIN MAPPING, 2016, 37 (04) :1443-1458
[14]   PANDA: a pipeline toolbox for analyzing brain diffusion images [J].
Cui, Zaixu ;
Zhong, Suyu ;
Xu, Pengfei ;
He, Yong ;
Gong, Gaolang .
FRONTIERS IN HUMAN NEUROSCIENCE, 2013, 7
[15]   IMPROVED ESTIMATION OF ULTRASOUND THERMAL STRAIN USING PULSE INVERSION HARMONIC IMAGING [J].
Ding, Xuan ;
Nguyen, Man M. ;
James, Isaac B. ;
Marra, Kacey G. ;
Rubin, J. Peter ;
Leers, Steven A. ;
Kim, Kang .
ULTRASOUND IN MEDICINE AND BIOLOGY, 2016, 42 (05) :1182-1192
[16]   Prediction of Individual Brain Maturity Using fMRI [J].
Dosenbach, Nico U. F. ;
Nardos, Binyam ;
Cohen, Alexander L. ;
Fair, Damien A. ;
Power, Jonathan D. ;
Church, Jessica A. ;
Nelson, Steven M. ;
Wig, Gagan S. ;
Vogel, Alecia C. ;
Lessov-Schlaggar, Christina N. ;
Barnes, Kelly Anne ;
Dubis, Joseph W. ;
Feczko, Eric ;
Coalson, Rebecca S. ;
Pruett, John R., Jr. ;
Barch, Deanna M. ;
Petersen, Steven E. ;
Schlaggar, Bradley L. .
SCIENCE, 2010, 329 (5997) :1358-1361
[17]   Networks of anatomical covariance [J].
Evans, Alan C. .
NEUROIMAGE, 2013, 80 :489-504
[18]   The Human Brainnetome Atlas: A New Brain Atlas Based on Connectional Architecture [J].
Fan, Lingzhong ;
Li, Hai ;
Zhuo, Junjie ;
Zhang, Yu ;
Wang, Jiaojian ;
Chen, Liangfu ;
Yang, Zhengyi ;
Chu, Congying ;
Xie, Sangma ;
Laird, Angela R. ;
Fox, Peter T. ;
Eickhoff, Simon B. ;
Yu, Chunshui ;
Jiang, Tianzi .
CEREBRAL CORTEX, 2016, 26 (08) :3508-3526
[19]   Functional Dysconnectivity of Corticostriatal Circuitry as a Risk Phenotype for Psychosis [J].
Fornito, Alex ;
Harrison, Ben J. ;
Goodby, Emmeline ;
Dean, Anna ;
Ooi, Cinly ;
Nathan, Pradeep J. ;
Lennox, Belinda R. ;
Jones, Peter B. ;
Suckling, John ;
Bullmore, Edward T. .
JAMA PSYCHIATRY, 2013, 70 (11) :1143-1151
[20]   Mapping Symptoms to Brain Networks with the Human Connectome [J].
Fox, Michael D. .
NEW ENGLAND JOURNAL OF MEDICINE, 2018, 379 (23) :2237-2245