共 50 条
Nanoscopic Approach to Quantification of Equilibrium and Rate Constants of Complex Formation at Single-Molecule Level
被引:9
作者:
Zhang, Xuzhu
[1
]
Sisamakis, Evangelos
[2
]
Sozanski, Krzysztof
[1
]
Holyst, Robert
[1
]
机构:
[1] Polish Acad Sci, Dept Soft Condensed Matter, Inst Phys Chem, PL-01224 Warsaw, Poland
[2] PicoQuant GmbH, D-12489 Berlin, Germany
关键词:
FLUORESCENCE CORRELATION SPECTROSCOPY;
LIPID-MEMBRANE DYNAMICS;
STED MICROSCOPY;
STIMULATED-EMISSION;
RESOLUTION;
NANOSCALE;
CELLS;
TOOL;
SUPERRESOLUTION;
BREAKING;
D O I:
10.1021/acs.jpclett.7b02742
中图分类号:
O64 [物理化学(理论化学)、化学物理学];
学科分类号:
070304 ;
081704 ;
摘要:
Equilibrium and rate constants are key descriptors of complex-formation processes in a variety of chemical and biological reactions. However, these parameters are difficult to quantify, especially in the locally confined, heterogeneous, and dynamically changing living matter. Herein, we address this challenge by combining stimulated emission depletion (STED) nanoscopy with fluorescence correlation spectroscopy (FCS). STED reduces the length-scale of observation to tens of nanometres (2D)/attoliters (3D) and the time-scale to microseconds, with direct, gradual control. This allows one to distinguish diffusional and binding processes of complex-formation, even at reaction rates higher by an order of magnitude than in confocal FCS. We provide analytical autocorrelation formulas for probes undergoing diffusion-reaction processes under STED condition. We support the theoretical analysis of experimental STED-FCS data on a model system of dye-icelle, where we retrieve the equilibrium and rates constants. Our work paves a promising way toward quantitative characterization of molecular interactions in vivo.
引用
收藏
页码:5785 / 5791
页数:7
相关论文
共 50 条