Many-Body Dynamical Localization in a Kicked Lieb-Liniger Gas

被引:24
作者
Rylands, Colin [1 ,2 ]
Rozenbaum, Efim [1 ,2 ]
Galitski, Victor [1 ,2 ]
Konik, Robert [3 ]
机构
[1] Univ Maryland, Joint Quantum Inst, College Pk, MD 20742 USA
[2] Univ Maryland, Condensed Matter Theory Ctr, College Pk, MD 20742 USA
[3] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Div, Upton, NY 11973 USA
关键词
INTERACTING BOSE-GAS; QUANTUM; DELOCALIZATION; SYSTEMS; BOSONS; CHAOS; MODEL;
D O I
10.1103/PhysRevLett.124.155302
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The kicked rotor system is a textbook example of how classical and quantum dynamics can drastically differ. The energy of a classical particle confined to a ring and kicked periodically will increase linearly in time whereas in the quantum version the energy saturates after a finite number of kicks. The quantum system undergoes Anderson localization in angular-momentum space. Conventional wisdom says that in a many-particle system with short-range interactions the localization will be destroyed due to the coupling of widely separated momentum states. Here we provide evidence that for an interacting one-dimensional Bose gas, the Lieb-Liniger model, the dynamical localization can persist at least for an unexpectedly long time.
引用
收藏
页数:6
相关论文
共 74 条
[61]   Periodically driven ergodic and many-body localized quantum systems [J].
Ponte, Pedro ;
Chandran, Anushya ;
Papic, Z. ;
Abanin, Dmitry A. .
ANNALS OF PHYSICS, 2015, 353 :196-204
[62]   SOLVABLE MODEL OF QUANTUM MOTION IN AN INCOMMENSURATE POTENTIAL [J].
PRANGE, RE ;
GREMPEL, DR ;
FISHMAN, S .
PHYSICAL REVIEW B, 1984, 29 (12) :6500-6512
[63]   Interacting ultracold atomic kicked rotors: loss of dynamical localization [J].
Qin, Pinquan ;
Andreanov, Alexei ;
Park, Hee Chul ;
Flach, Sergej .
SCIENTIFIC REPORTS, 2017, 7
[64]   Characterizations of prethermal states in periodically driven many-body systems with unbounded chaotic diffusion [J].
Rajak, Atanu ;
Dana, Itzhack ;
Dalla Torre, Emanuele G. .
PHYSICAL REVIEW B, 2019, 100 (10)
[65]   Dynamical localization of coupled relativistic kicked rotors [J].
Rozenbaum, Efim B. ;
Galitski, Victor .
PHYSICAL REVIEW B, 2017, 95 (06)
[66]   Fermionic quasiparticle representation of Tomonaga-Luttinger Hamiltonian [J].
Rozhkov, AV .
EUROPEAN PHYSICAL JOURNAL B, 2005, 47 (02) :193-206
[67]   DELOCALIZATION OF QUANTUM CHAOS BY WEAK NONLINEARITY [J].
SHEPELYANSKY, DL .
PHYSICAL REVIEW LETTERS, 1993, 70 (12) :1787-1790
[68]  
TAKAHASHI K, 1989, PROG THEOR PHYS SUPP, P109, DOI 10.1143/PTPS.98.109
[69]  
Toikka L. A., ARXIV190109362
[70]   The complete equation of state of one, two and three-dimensional gases of hard elastic spheres [J].
Tonks, L .
PHYSICAL REVIEW, 1936, 50 (10) :955-963