Many-Body Dynamical Localization in a Kicked Lieb-Liniger Gas

被引:24
作者
Rylands, Colin [1 ,2 ]
Rozenbaum, Efim [1 ,2 ]
Galitski, Victor [1 ,2 ]
Konik, Robert [3 ]
机构
[1] Univ Maryland, Joint Quantum Inst, College Pk, MD 20742 USA
[2] Univ Maryland, Condensed Matter Theory Ctr, College Pk, MD 20742 USA
[3] Brookhaven Natl Lab, Condensed Matter Phys & Mat Sci Div, Upton, NY 11973 USA
关键词
INTERACTING BOSE-GAS; QUANTUM; DELOCALIZATION; SYSTEMS; BOSONS; CHAOS; MODEL;
D O I
10.1103/PhysRevLett.124.155302
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The kicked rotor system is a textbook example of how classical and quantum dynamics can drastically differ. The energy of a classical particle confined to a ring and kicked periodically will increase linearly in time whereas in the quantum version the energy saturates after a finite number of kicks. The quantum system undergoes Anderson localization in angular-momentum space. Conventional wisdom says that in a many-particle system with short-range interactions the localization will be destroyed due to the coupling of widely separated momentum states. Here we provide evidence that for an interacting one-dimensional Bose gas, the Lieb-Liniger model, the dynamical localization can persist at least for an unexpectedly long time.
引用
收藏
页数:6
相关论文
共 74 条
[1]   Theory of many-body localization in periodically driven systems [J].
Abanin, Dmitry A. ;
De Roeck, Wojciech ;
Huveneers, Francois .
ANNALS OF PHYSICS, 2016, 372 :1-11
[2]   Exponentially Slow Heating in Periodically Driven Many-Body Systems [J].
Abanin, Dmitry A. ;
De Roeck, Wojciech ;
Huveneers, Francois .
PHYSICAL REVIEW LETTERS, 2015, 115 (25)
[3]   QUANTUM-CLASSICAL CORRESPONDENCE IN MANY-DIMENSIONAL QUANTUM CHAOS [J].
ADACHI, S ;
TODA, M ;
IKEDA, K .
PHYSICAL REVIEW LETTERS, 1988, 61 (06) :659-661
[4]   ABSENCE OF DIFFUSION IN CERTAIN RANDOM LATTICES [J].
ANDERSON, PW .
PHYSICAL REVIEW, 1958, 109 (05) :1492-1505
[5]  
[Anonymous], 2014, BETHE WAVEFUNCTION
[6]   Transport in Out-of-Equilibrium XXZ Chains: Exact Profiles of Charges and Currents [J].
Bertini, Bruno ;
Collura, Mario ;
De Nardis, Jacopo ;
Fagotti, Maurizio .
PHYSICAL REVIEW LETTERS, 2016, 117 (20)
[7]   Many-body physics with ultracold gases [J].
Bloch, Immanuel ;
Dalibard, Jean ;
Zwerger, Wilhelm .
REVIEWS OF MODERN PHYSICS, 2008, 80 (03) :885-964
[8]   ENHANCEMENT OF LOCALIZATION LENGTH FOR 2 INTERACTING KICKED ROTATORS [J].
BORGONOVI, F ;
SHEPELYANSKY, DL .
NONLINEARITY, 1995, 8 (05) :877-890
[9]   Particle propagation in a random and quasi-periodic potential [J].
Borgonovi, F ;
Shepelyansky, DL .
PHYSICA D-NONLINEAR PHENOMENA, 1997, 109 (1-2) :24-31
[10]   Universal high-frequency behavior of periodically driven systems: from dynamical stabilization to Floquet engineering [J].
Bukov, Marin ;
D'Alessio, Luca ;
Polkovnikov, Anatoli .
ADVANCES IN PHYSICS, 2015, 64 (02) :139-226