Quartic parameters for acoustic applications of lattice Boltzmann scheme

被引:33
作者
Dubois, Francois [1 ,2 ]
Lallemand, Pierre [3 ]
机构
[1] Univ Paris 11, Dept Math, F-91405 Orsay, France
[2] Conservatoire Natl Arts & Metiers, Dept Math, Paris, France
[3] CNRS, Paris, France
关键词
Taylor expansion method; Linearized Navier-Stokes; MODIFIED EQUATIONS; FLOW; STABILITY; BOUNDARY; MODELS; FLUID;
D O I
10.1016/j.camwa.2011.01.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using the Taylor expansion method, we show that it is possible to improve the lattice Boltzmann method for acoustic applications. We derive a formal expansion of the eigenvalues of the discrete approximation and fit the parameters of the scheme to enforce fourth order accuracy. The corresponding discrete equations are solved with the help of symbolic manipulation. The solutions are obtained in the case of D3Q27 lattice Boltzmann scheme. Various numerical tests support the coherence of this approach. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3404 / 3416
页数:13
相关论文
共 36 条
[1]   Momentum transfer of a Boltzmann-lattice fluid with boundaries [J].
Bouzidi, M ;
Firdaouss, M ;
Lallemand, P .
PHYSICS OF FLUIDS, 2001, 13 (11) :3452-3459
[2]   On the derivation of the modified equation for the analysis of linear numerical methods [J].
Carpentier, R ;
delaBourdonnaye, A ;
Larrouturou, B .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1997, 31 (04) :459-470
[3]   THERMAL LATTICE BHATNAGAR-GROSS-KROOK MODEL WITHOUT NONLINEAR DEVIATIONS IN MACRODYNAMIC EQUATIONS [J].
CHEN, Y ;
OHASHI, H ;
AKIYAMA, M .
PHYSICAL REVIEW E, 1994, 50 (04) :2776-2783
[4]  
Cohen-Tannoudji C., 1978, Quantum Mechanics, V2
[5]  
D'HUMIERES D., 1992, RAREFIED GAS DYN, V159, P450
[6]  
Dellar PJ, 2002, J COMPUT PHYS, V179, P95, DOI 10.1006/jcph
[7]  
DHUMIERES D, 1986, EUROPHYS LETT, V2, P291, DOI 10.1209/0295-5075/2/4/006
[8]  
DUBOIS F, 2007, ESAIM P, V18, P181
[9]   THIRD ORDER EQUIVALENT EQUATION OF LATTICE BOLTZMANN SCHEME [J].
Dubois, Francois .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2009, 23 (1-2) :221-248
[10]   Equivalent partial differential equations of a lattice Boltzmann scheme [J].
Dubois, Francois .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 55 (07) :1441-1449