Current progress and challenges in HIV gene therapy

被引:12
作者
Chung, Janet [1 ]
Rossi, John J. [1 ,2 ]
Jung, Ulrike [1 ]
机构
[1] City Hope Natl Med Ctr, Beckman Res Inst, Div Mol & Cell Biol, Duarte, CA 91010 USA
[2] City Hope Natl Med Ctr, Grad Sch Biol Sci, Duarte, CA 91010 USA
关键词
antibody mimetic; dominant negative mutant; gene therapy; hematopoietic stem cell; HIV-1; ribozyme; RNA decoy; RNAi; sequence-specific nuclease; T cell; IMMUNODEFICIENCY-VIRUS TYPE-1; ZINC-FINGER NUCLEASES; HEMATOPOIETIC STEM-CELLS; SMALL INTERFERING RNAS; LENTIVIRAL VECTOR; BONE-MARROW; IN-VIVO; GENOME-WIDE; T-CELLS; EXPRESSION;
D O I
10.2217/FVL.11.113
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
HIV-1 causes AIDS, a syndrome that affects millions of people globally. Existing HAART is efficient in slowing down disease progression but cannot eradicate the virus. Furthermore the severity of the side effects and the emergence of drug-resistant mutants call for better therapy. Gene therapy serves as an attractive alternative as it reconstitutes the immune system with HIV-resistant cells and could thereby provide a potential cure. The feasibility of this approach was first demonstrated with the 'Berlin patient', who was functionally cured from HIV/AIDS with undetectable HIV-1 viral load after transplantation of bone marrow harboring a naturally occurring CCR5 mutation that blocks viral entry. Here, we give an overview of the current status of HIV gene therapy and remaining challenges and obstacles.
引用
收藏
页码:1319 / 1328
页数:10
相关论文
共 112 条
[1]   Engineering and optimization of the miR-106b cluster for ectopic expression of multiplexed anti-HIV RNAs [J].
Aagaard L.A. ;
Zhang J. ;
von Eije K.J. ;
Li H. ;
Sætrom P. ;
Amarzguioui M. ;
Rossi J.J. .
Gene Therapy, 2008, 15 (23) :1536-1549
[2]   In vivo kinetics of murine hemopoietic stem cells [J].
Abkowitz, JL ;
Golinelli, D ;
Harrison, DE ;
Guttorp, P .
BLOOD, 2000, 96 (10) :3399-3405
[3]   Anti-human immunodeficiency virus hematopoietic progenitor cell-delivered ribozyme in a phase I study: Myeloid and lymphoid reconstitution in human immunodeficiency virus type-1-infected patients [J].
Amado, RG ;
Mitsuyasu, RT ;
Rosenblatt, JD ;
Ngok, FK ;
Bakker, A ;
Cole, S ;
Chorn, N ;
Lin, LS ;
Bristol, G ;
Boyd, MP ;
Macpherson, JL ;
Fanning, GC ;
Todd, AV ;
Ely, JA ;
Zack, JA ;
Symonds, GP .
HUMAN GENE THERAPY, 2004, 15 (03) :251-262
[4]   Optimization and functional effects of stable short hairpin RNA expression in primary human lymphocytes via lentiviral vectors [J].
An, Dong Sung ;
Qin, F. Xiao-Feng ;
Auyeung, Vincent C. ;
Mao, Si Hua ;
Kung, Sam K. P. ;
Baltimore, David ;
Chen, Irvin S. Y. .
MOLECULAR THERAPY, 2006, 14 (04) :494-504
[5]   Preintegration HIV-1 Inhibition by a Combination Lentiviral Vector Containing a Chimeric TRIM5α Protein, a CCR5 shRNA, and a TAR Decoy [J].
Anderson, Joseph S. ;
Javien, John ;
Nolta, Jan A. ;
Bauer, Gerhard .
MOLECULAR THERAPY, 2009, 17 (12) :2103-2114
[6]   In vivo delivery of a microRNA-regulated transgene induces antigen-specific regulatory T cells and promotes immunologic tolerance [J].
Annoni, Andrea ;
Brown, Brian D. ;
Cantore, Alessio ;
Sergi, Lucia Sergi ;
Naldini, Luigi ;
Roncarolo, Maria-Grazia .
BLOOD, 2009, 114 (25) :5152-5161
[7]   Successful Targeting and Disruption of an Integrated Reporter Lentivirus Using the Engineered Homing Endonuclease Y2 I-AniI [J].
Aubert, Martine ;
Ryu, Byoung Y. ;
Banks, Lindsey ;
Rawlings, David J. ;
Scharenberg, Andrew M. ;
Jerome, Keith R. .
PLOS ONE, 2011, 6 (02)
[8]   MicroRNAs: Genomics, biogenesis, mechanism, and function (Reprinted from Cell, vol 116, pg 281-297, 2004) [J].
Bartel, David P. .
CELL, 2007, 131 (04) :11-29
[9]   Molecular strategies to design an escape-proof antiviral therapy [J].
Berkhout, Ben ;
Sanders, Rogier W. .
ANTIVIRAL RESEARCH, 2011, 92 (01) :7-14
[10]   Human immunodeficiency virus type 1 escape from RNA interference [J].
Boden, D ;
Pusch, O ;
Lee, F ;
Tucker, L ;
Ramratnam, B .
JOURNAL OF VIROLOGY, 2003, 77 (21) :11531-11535