Existence of three solutions for p(x)-Laplacian equations

被引:27
作者
Liu, Qiao [1 ]
机构
[1] Lanzhou Univ, Dept Math, Lanzhou 730000, Peoples R China
基金
中国国家自然科学基金;
关键词
p(x)-laplacian; variable exponent sobolev space; Neumann problem; Dirichlet problem;
D O I
10.1016/j.na.2007.01.035
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, using B. Ricceri's three-critical-points theorem and variational methods, we study the solutions of the p(x)Laplacian equations with Neumann or Dirichlet boundary condition on a bounded domain, and obtain three solutions under appropriate hypotheses. (C) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2119 / 2127
页数:9
相关论文
共 14 条
[1]  
AFROUZI GA, 2006, NONLINEAR ANAL
[2]  
[Anonymous], MATH USSR
[3]   Three solutions to a Neumann problem for elliptic equations involving the p-Laplacian [J].
Bonanno, G ;
Candito, P .
ARCHIV DER MATHEMATIK, 2003, 80 (04) :424-429
[4]  
Edmunds DE, 2002, MATH NACHR, V246, P53, DOI 10.1002/1522-2616(200212)246:1<53::AID-MANA53>3.0.CO
[5]  
2-T
[6]   Sobolev embedding theorems for spaces Wk,p(x)(Ω) [J].
Fan, XL ;
Shen, JS ;
Zhao, D .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 262 (02) :749-760
[7]   Existence of solutions for p(x)-Laplacian Dirichlet problem [J].
Fan, XL ;
Zhang, QH .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2003, 52 (08) :1843-1852
[8]   On the spaces Lp(x)(Ω) and Wm, p(x)(Ω) [J].
Fan, XL ;
Zhao, D .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 263 (02) :424-446
[9]  
FAN XL, 2006, NONLINEAR ANAL
[10]  
KOVACIK O, 1991, CZECH MATH J, V41, P592