Estimation Methods of Alpha Power Exponential Distribution with Applications to Engineering and Medical Data

被引:31
作者
Nassar, Mazen [1 ,2 ]
Afify, Ahmed Z. [3 ]
Shakhatreh, Mohammed K. [4 ]
机构
[1] King Abdulaziz Univ, Fac Sci, Dept Stat, Jeddah, Saudi Arabia
[2] Zagazig Univ, Fac Commerce, Dept Stat, Zagazig, Egypt
[3] Benha Univ, Dept Stat Math & Insurance, Banha, Egypt
[4] Jordan Univ Sci & Technol, Dept Math & Stat, Irbid, Jordan
关键词
Alpha power transformation; hazard rate function; maximum likelihood estimation; method of maximum product spacing; simulation; WEIBULL DISTRIBUTION PROPERTIES; LINDLEY DISTRIBUTION; FAMILY;
D O I
10.18187/pjsor.v16i1.3129
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper addresses the estimation of the unknown parameters of the alpha power exponential distribution (Mandavi and Kundu, 2017) using nine frequentist estimation methods. We discuss the finite sample properties of the parameter estimates of the alpha power exponential distribution via Monte Carlo simulations. The potentiality of the distribution is analyzed by means of two real data sets from the fields of engineering and medicine. Finally, we use the maximum likelihood method to derive the estimates of the distribution parameters under competing risks data and analyze one real data set.
引用
收藏
页码:149 / 166
页数:18
相关论文
共 34 条
[1]  
Afify A. Z., 2020, MATHEMATICS, V8, P1
[2]   The Weibull Marshall-Olkin Lindley distribution: properties and estimation [J].
Afify, Ahmed Z. ;
Nassar, Mazen ;
Cordeiro, Gauss M. ;
Kumar, Devendra .
JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE, 2020, 14 (01) :192-204
[3]   On three-parameter exponential distribution: properties, Bayesian and non-Bayesian estimation based on complete and censored samples [J].
Afify, Ahmed Z. ;
Suzuki, Adriano K. ;
Zhang, Chunfang ;
Nassar, Mazen .
COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2021, 50 (11) :3799-3819
[4]  
[Anonymous], 1986, Statistics: Textbooks and Monographs
[5]   Inference for Weibull distribution under adaptive Type-I progressive hybrid censored competing risks data [J].
Ashour, S. K. ;
Nassar, M. .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2017, 46 (10) :4756-4773
[6]  
Ashour S. K., 2014, PAK J STAT OPER RES, V10, P2014
[7]  
Cheng N., 1979, Technical Report, V791
[8]  
CHENG RCH, 1983, J ROY STAT SOC B MET, V45, P394
[9]   The Lindley Weibull Distribution: properties and applications [J].
Cordeiro, Gauss M. ;
Afify, Ahmed Z. ;
Yousof, Haitham M. ;
Cakmakyapan, Selen ;
Ozel, Gamze .
ANAIS DA ACADEMIA BRASILEIRA DE CIENCIAS, 2018, 90 (03) :2579-2598
[10]   Progressively Type-II censored competing risks data from Lomax distributions [J].
Cramer, Erhard ;
Schmiedt, Anja Bettina .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2011, 55 (03) :1285-1303