Dispersive Effects in Microwave AlGaN/AlN/GaN HEMTs With Carbon-Doped Buffer

被引:62
作者
Gustafsson, Sebastian [1 ]
Chen, Jr-Tai [2 ]
Bergsten, Johan [1 ]
Forsberg, Urban [2 ]
Thorsell, Mattias [1 ]
Janzen, Erik [2 ]
Rorsman, Niklas [1 ]
机构
[1] Chalmers Univ Technol, Microwave Elect Lab, Dept Microtechnol & Nanosci, SE-41296 Gothenburg, Sweden
[2] Linkoping Univ, Dept Phys Chem & Biol, SE-58183 Linkoping, Sweden
关键词
Current collapse (CC); dispersion; gallium nitride (GaN); high-electron mobility transistor (HEMT); trap levels; ALGAN/GAN HEMTS; CURRENT COLLAPSE; GAN; MOBILITY; TRAPS; LEAKAGE; GROWTH; MOCVD;
D O I
10.1109/TED.2015.2428613
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Aluminium gallium nitride (AlGaN)/GaN high-electron mobility transistor performance is to a large extent affected by the buffer design, which, in this paper, is varied using different levels of carbon incorporation. Three epitaxial structures have been fabricated: 1) two with uniform carbon doping profile but different carbon concentration and 2) one with a stepped doping profile. The epitaxial structures have been grown on 4H-SiC using hot-wall metal-organic chemical vapor deposition with residual carbon doping. The leakage currents in OFF-state at 10 V drain voltage were in the same order of magnitude (10(-4) A/mm) for the high-doped and stepped-doped buffer. The high-doped material had a current collapse (CC) of 78.8% compared with 16.1% for the stepped-doped material under dynamic I-V conditions. The low-doped material had low CC (5.2%) but poor buffer isolation. Trap characterization revealed that the high-doped material had two trap levels at 0.15 and 0.59 eV, and the low-doped material had one trap level at 0.59 eV.
引用
收藏
页码:2162 / 2169
页数:8
相关论文
共 28 条
[1]   AlGaN/GaN/GaN:C Back-Barrier HFETs With Breakdown Voltage of Over 1 kV and Low RON x A [J].
Bahat-Treidel, Eldad ;
Brunner, Frank ;
Hilt, Oliver ;
Cho, Eunjung ;
Wuerfl, Joachim ;
Traenkle, Guenther .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2010, 57 (11) :3050-3058
[2]   A NEW DRAIN-CURRENT INJECTION TECHNIQUE FOR THE MEASUREMENT OF OFF-STATE BREAKDOWN VOLTAGE IN FETS [J].
BAHL, SR ;
DELALAMO, JA .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 1993, 40 (08) :1558-1560
[3]   Trapping effects in GaN and SiC microwave FETs [J].
Binari, SC ;
Klein, PB ;
Kazior, TE .
PROCEEDINGS OF THE IEEE, 2002, 90 (06) :1048-1058
[4]   Impact of residual carbon on two-dimensional electron gas properties in AlxGa1-xN/GaN heterostructure [J].
Chen, Jr-Tai ;
Forsberg, Urban ;
Janzen, Erik .
APPLIED PHYSICS LETTERS, 2013, 102 (19)
[5]   Comparison of the DC and microwave performance of AlGaN/GaN HEMTs grown on SiC by MOCVD with Fe-doped or unintentionally doped GaN buffer layers [J].
Desmaris, V. ;
Rudzinski, M. ;
Rorsman, N. ;
Hageman, P. R. ;
Larsen, P. K. ;
Zirath, H. ;
Roedle, T. C. ;
Jos, H. F. F. .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2006, 53 (09) :2413-2417
[6]   Optimization of recessed ohmic contacts for AlGaN/AlN/GaN heterostructures using C(V) characterization of MSHM structures [J].
Fagerlind, Martin ;
Rorsman, Niklas .
PHYSICA STATUS SOLIDI C: CURRENT TOPICS IN SOLID STATE PHYSICS, VOL 8, NO 7-8, 2011, 8 (7-8) :2204-2206
[7]   Characterization and analysis of trap-related effects in AlGaN-GaNHEMTs [J].
Faqir, M. ;
Verzellesi, G. ;
Fantini, F. ;
Danesin, F. ;
Rampazzo, F. ;
Meneghesso, G. ;
Zanoni, E. ;
Cavallini, A. ;
Castaldini, A. ;
Labat, N. ;
Touboul, A. ;
Dua, C. .
MICROELECTRONICS RELIABILITY, 2007, 47 (9-11) :1639-1642
[8]   Improved hot-wall MOCVD growth of highly uniform AlGaN/GaN/HEMT structures [J].
Forsberg, Urban ;
Lundskog, A. ;
Kakanakova-Georgieva, A. ;
Ciechonski, R. ;
Janzen, E. .
JOURNAL OF CRYSTAL GROWTH, 2009, 311 (10) :3007-3010
[9]   Growth of Fe doped semi-insulating GaN by metalorganic chemical vapor deposition [J].
Heikman, S ;
Keller, S ;
DenBaars, SP ;
Mishra, UK .
APPLIED PHYSICS LETTERS, 2002, 81 (03) :439-441
[10]   Hot-Wall MOCVD for Highly Efficient and Uniform Growth of AIN [J].
Kakanakova-Georgieva, A. ;
Ciechonski, R. R. ;
Forsberg, U. ;
Lundskog, A. ;
Janzen, E. .
CRYSTAL GROWTH & DESIGN, 2009, 9 (02) :880-884