Ultrathin Vein-Like Iridium-Tin Nanowires with Abundant Oxidized Tin as High-Performance Ethanol Oxidation Electrocatalysts

被引:50
作者
Zhu, Meiwu [1 ,2 ]
Shao, Qi [2 ]
Pi, Yecan [2 ]
Guo, Jun [3 ]
Huang, Bin [1 ]
Qian, Yong [1 ]
Huang, Xiaoqing [2 ]
机构
[1] East China Univ Technol, Jiangxi Prov Key Lab Polymer Micro Nano Mfg & Dev, Nanchang 330013, Jiangxi, Peoples R China
[2] Soochow Univ, Coll Chem Chem Engn & Mat Sci, Suzhou 215123, Jiangsu, Peoples R China
[3] Soochow Univ, Testing & Anal Ctr, Suzhou 215123, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
ethanol oxidation; iridium; oxidized Sn; ultrathin nanowires; vein-like; FACILE SYNTHESIS; EFFICIENT; NANOCRYSTALS; CATALYSTS; ELECTROOXIDATION; PD; NANOPARTICLES; SURFACE; FACETS; ARRAYS;
D O I
10.1002/smll.201701295
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Iridium (Ir) holds great promise for ethanol oxidation reaction (EOR), while its practical applications suffer from the limited shape-controlled synthesis due to its low-energy barrier for nucleation. To overcome this limitation, the preparation of a new class of ultrathin vein-like Ir-tin nanowires (IrSn NWs) with abundant oxidized Sn is reported. By tuning the ratio of Ir to Sn, the optimized Ir67Sn33/C exhibits the highest mass density of 95.6 mA mg(-1) Ir for EOR at low potential (0.04 V), which is 4.1-fold and 20-fold higher than that of Ir/C and the commercial Pt/C, respectively. It also exhibits the smallest Tafel slope of 153 mV dec(-1) and superior stability after 2 h chronoamperometric measurement. Electrochemical measurements and X-ray photoelectron spectra results confirm that the abundant oxidized Sn promotes a complete oxidization of ethanol into CO2 at low potential. This work highlights the importance of non-noble metal on enhancing the EOR performance.
引用
收藏
页数:8
相关论文
共 37 条
[1]  
[Anonymous], ANGEW CHEM
[2]   Iridium As Catalyst and Cocatalyst for Oxygen Evolution/Reduction in Acidic Polymer Electrolyte Membrane Electrolyzers and Fuel Cells [J].
Antolini, Ermete .
ACS CATALYSIS, 2014, 4 (05) :1426-1440
[3]   Palladium in fuel cell catalysis [J].
Antolini, Ermete .
ENERGY & ENVIRONMENTAL SCIENCE, 2009, 2 (09) :915-931
[4]   Palladium-Based Electrocatalysts for Alcohol Oxidation in Half Cells and in Direct Alcohol Fuel Cells [J].
Bianchini, Claudio ;
Shen, Pei Kang .
CHEMICAL REVIEWS, 2009, 109 (09) :4183-4206
[5]   Platinum-Based Nanostructured Materials: Synthesis, Properties, and Applications [J].
Chen, Aicheng ;
Holt-Hindle, Peter .
CHEMICAL REVIEWS, 2010, 110 (06) :3767-3804
[6]  
Cui CH, 2013, NAT MATER, V12, P765, DOI [10.1038/NMAT3668, 10.1038/nmat3668]
[7]   Platinum-Tin Oxide Core-Shell Catalysts for Efficient Electro-Oxidation of Ethanol [J].
Du, Wenxin ;
Yang, Guangxing ;
Wong, Emily ;
Deskins, N. Aaron ;
Frenkel, Anatoly I. ;
Su, Dong ;
Teng, Xiaowei .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (31) :10862-10865
[8]   Palladium-Tin Alloyed Catalysts for the Ethanol Oxidation Reaction in an Alkaline Medium [J].
Du, Wenxin ;
Mackenzie, Kayla E. ;
Milano, Daniel F. ;
Deskins, N. Aaron ;
Su, Dong ;
Teng, Xiaowei .
ACS CATALYSIS, 2012, 2 (02) :287-297
[9]   Highly Active Iridium/Iridium-Tin/Tin Oxide Heterogeneous Nanoparticles as Alternative Electrocatalysts for the Ethanol Oxidation Reaction [J].
Du, Wenxin ;
Wang, Qi ;
Saxner, David ;
Deskins, N. Aaron ;
Su, Dong ;
Krzanowski, James E. ;
Frenkel, Anatoly I. ;
Teng, Xiaowei .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (38) :15172-15183
[10]   Crystal phase-controlled synthesis, properties and applications of noble metal nanomaterials [J].
Fan, Zhanxi ;
Zhang, Hua .
CHEMICAL SOCIETY REVIEWS, 2016, 45 (01) :63-82