A Hybrid Method for Monotone Variational Inequalities Involving Pseudocontractions

被引:2
作者
Yao, Yonghong [2 ]
Marino, Giuseppe [1 ]
Liou, Yeong-Cheng [3 ]
机构
[1] Univ Calabria, Dipartimento Matemat, I-87036 Arcavacata Di Rende, CS, Italy
[2] Tianjin Polytech Univ, Dept Math, Tianjin 300160, Peoples R China
[3] Cheng Shiu Univ, Dept Informat Management, Kaohsiung 833, Taiwan
关键词
KRASNOSELSKI-MANN ITERATION;
D O I
10.1155/2011/180534
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We use strongly pseudocontraction to regularize the following ill-posed monotone variational inequality: finding a point x* with the property x* is an element of Fix(T) such that <(I - S) x*, x - x*> >= = 0, x is an element of Fix(T) where S, T are two pseudocontractive self-mappings of a closed convex subset C of a Hilbert space with the set of fixed points Fix(T) not equal theta. Assume the solution set Omega of (VI) is nonempty. In this paper, we introduce one implicit scheme which can be used to find an element x* is an element of Omega. Our results improve and extend a recent result of (Lu et al. 2009).
引用
收藏
页数:8
相关论文
共 11 条
[1]   REGULARIZATION AND ITERATION METHODS FOR A CLASS OF MONOTONE VARIATIONAL INEQUALITIES [J].
Chen, Rudong ;
Su, Yongfu ;
Xu, Hong-Kun .
TAIWANESE JOURNAL OF MATHEMATICS, 2009, 13 (2B) :739-752
[2]   ON AN IMPLICIT HIERARCHICAL FIXED POINT APPROACH TO VARIATIONAL INEQUALITIES [J].
Cianciaruso, Filomena ;
Colao, Vittorio ;
Muglia, Luigi ;
Xu, Hong-Kun .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2009, 80 (01) :117-124
[3]   ZEROS OF ACCRETIVE OPERATORS [J].
DEIMLING, K .
MANUSCRIPTA MATHEMATICA, 1974, 13 (04) :365-374
[4]   Hybrid methods for a class of monotone variational inequalities [J].
Lu, Xiwen ;
Xu, Hong-Kun ;
Yin, Ximing .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (3-4) :1032-1041
[5]  
Mainge PE., 2007, PACIFIC J OPTIM, V3, P529
[6]   KRASNOSELSKI-MANN ITERATION FOR HIERARCHICAL FIXED POINTS AND EQUILIBRIUM PROBLEM [J].
Marino, Giuseppe ;
Colao, Vittorio ;
Muglia, Luigi ;
Yao, Yonghong .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2009, 79 (02) :187-200
[7]   Towards viscosity approximations of hierarchical fixed-point problems [J].
Moudafi, A. ;
Mainge, P. -E. .
FIXED POINT THEORY AND APPLICATIONS, 2006, 2006 (1)
[8]   Krasnoselski-Mann iteration for hierarchical fixed-point problems [J].
Moudafi, Abdellatif .
INVERSE PROBLEMS, 2007, 23 (04) :1635-1640
[9]  
Yamada I., 2001, STUDIES COMPUTATIONA, V8, P473, DOI DOI 10.1016/S1570-579X(01)80028-8
[10]   Weak and strong convergence of Krasnoselski-Mann iteration for hierarchical fixed point problems [J].
Yao, Yonghong ;
Liou, Yeong-Cheng .
INVERSE PROBLEMS, 2008, 24 (01)