Characterization of liquid phase epitaxial GaAs for blocked-impurity-band far-infrared detectors

被引:15
作者
Cardozo, BL
Reichertz, LA
Beeman, JW
Haller, EE [1 ]
机构
[1] Univ Calif Berkeley, Div Engn & Mat Sci, Berkeley, CA 94720 USA
[2] Lawrence Berkeley Natl Lab, Div Mat Sci, Berkeley, CA 94720 USA
[3] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
关键词
BIB; gallium arsenide; LPE; far-infrared detectors;
D O I
10.1016/j.infrared.2004.07.002
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
GaAs blocked-impurity-band (BIB) photoconductor detectors have the potential to become the most sensitive, low noise detectors in the far-infrared below 45.5 cm(-1) (>= 220 mu m). We have studied the characteristics of liquid phase epitaxial GaAs films relevant to BIB detector production, including impurity band formation and the infrared absorption of the active section of the device. Knowledge of the far-infrared absorption spectrum as a function of donor concentration combined with variable temperature Hall effect and resistivity studies leads us to conclude that the optimal concentrartion for the absorbing layer of a GaAs BIB detector lies between 1 x 10(15) and 6.7 x 10(15) cm(-3). At these concentrations there is significant wave function overlap which in turn leads to absorption beyond the Is ground to 2p bound excited state transition of 35.5 cm(-1) (282 mu m). There still remains a gap between the upper edge of the donor band and the bottom of the conduction band, a necessity for proper BIB detector operation. (c) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:400 / 407
页数:8
相关论文
共 20 条
[1]   Influence of the Sb dopant distribution on far infrared photoconductivity in Ge:Sb blocked impurity band detectors [J].
Bandaru, J ;
Beeman, JW ;
Haller, EE ;
Samperi, S ;
Haegel, NM .
INFRARED PHYSICS & TECHNOLOGY, 2002, 43 (06) :353-360
[2]   Far-infrared absorption in GaAs:Te liquid phase epitaxial films [J].
Cardozo, BL ;
Haller, EE ;
Reichertz, LA ;
Beeman, JW .
APPLIED PHYSICS LETTERS, 2003, 83 (19) :3990-3992
[3]  
CARDOZO BL, 2002, FAR IR SUBMM MM DETE
[4]   Photoconductors for 200-400 mu m: Choices and challenges [J].
Haegel, NM .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 1996, 377 (2-3) :501-507
[5]   LARGE-STRAIN DEPENDENCE OF ACCEPTOR BINDING ENERGY IN GERMANIUM [J].
HALL, JJ .
PHYSICAL REVIEW, 1962, 128 (01) :68-&
[6]   ADVANCED FAR-INFRARED DETECTORS [J].
HALLER, EE .
INFRARED PHYSICS & TECHNOLOGY, 1994, 35 (2-3) :127-146
[7]   GE-GA PHOTOCONDUCTORS IN LOW INFRARED BACKGROUNDS [J].
HALLER, EE ;
HUESCHEN, MR ;
RICHARDS, PL .
APPLIED PHYSICS LETTERS, 1979, 34 (08) :495-497
[8]   PHOTOTHERMAL IONIZATION SPECTROSCOPY [J].
HALLER, EE ;
HANSEN, WL ;
GOULDING, FS .
IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 1975, NS22 (01) :127-134
[9]   Multiband imaging photometer for SIRTF [J].
Heim, GB ;
Henderson, ML ;
MacFeely, K ;
McMahon, TJ ;
Michika, D ;
Pearson, RJ ;
Rieke, GH ;
Schwenker, JP ;
Strecker, DW ;
Thompson, C ;
Warden, RM ;
Wilson, DA ;
Young, ET .
SPACE TELESCOPES AND INSTRUMENTS V, PTS 1-2, 1998, 3356 :985-1000
[10]   A comprehensive thermodynamic analysis of native point defect and dopant solubilities in gallium arsenide [J].
Hurle, DTJ .
JOURNAL OF APPLIED PHYSICS, 1999, 85 (10) :6957-7022