Nonasymptotic control of the MLE for misspecified nonparametric hidden Markov models

被引:2
作者
Lehericy, Luc [1 ]
机构
[1] Univ Cote Azur, Lab JA Dieudonne, CNRS, F-06108 Nice, France
关键词
Misspecified model; nonparametric statistics; maximum likelihood estimator; model selection; oracle inequality; hidden Markov model; MAXIMUM-LIKELIHOOD-ESTIMATION; DENSITY-ESTIMATION; POSTERIOR CONSISTENCY; ASYMPTOTIC PROPERTIES; ESTIMATOR; MIXTURES;
D O I
10.1214/21-EJS1890
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Finite state space hidden Markov models are flexible tools to model phenomena with complex time dependencies: any process distribution can be approximated by a hidden Markov model with enough hidden states. We consider the problem of estimating an unknown process distribution using nonparametric hidden Markov models in the misspecified setting, that is when the data-generating process may not be a hidden Markov model. We show that when the true distribution is exponentially mixing and satisfies a forgetting assumption, the maximum likelihood estimator recovers the best approximation of the true distribution. We prove a finite sample bound on the resulting error and show that it is optimal in the minimax sense-up to logarithmic factors-when the model is well specified.
引用
收藏
页码:4916 / 4965
页数:50
相关论文
共 37 条
[1]   Nonparametric identification and maximum likelihood estimation for hidden Markov models [J].
Alexandrovich, G. ;
Holzmann, H. ;
Leister, A. .
BIOMETRIKA, 2016, 103 (02) :423-434
[2]  
Anandkumar A., 2012, P 25 ANN C LEARN THE, P33
[3]   A survey of cross-validation procedures for model selection [J].
Arlot, Sylvain ;
Celisse, Alain .
STATISTICS SURVEYS, 2010, 4 :40-79
[4]   THE STRONG ERGODIC THEOREM FOR DENSITIES - GENERALIZED SHANNON-MCMILLAN-BREIMAN THEOREM [J].
BARRON, AR .
ANNALS OF PROBABILITY, 1985, 13 (04) :1292-1303
[5]   STATISTICAL INFERENCE FOR PROBABILISTIC FUNCTIONS OF FINITE STATE MARKOV CHAINS [J].
BAUM, LE ;
PETRIE, T .
ANNALS OF MATHEMATICAL STATISTICS, 1966, 37 (06) :1554-&
[6]   Non-parametric estimation of finite mixtures from repeated measurements [J].
Bonhomme, Stephane ;
Jochmans, Koen ;
Robin, Jean-Marc .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2016, 78 (01) :211-229
[7]   Movement models provide insights into variation in the foraging effort of central place foragers [J].
Boyd, Charlotte ;
Punt, Andre E. ;
Weimerskirch, Henri ;
Bertrand, Sophie .
ECOLOGICAL MODELLING, 2014, 286 :13-25
[8]   Basic Properties of Strong Mixing Conditions. A Survey and Some Open Questions [J].
Bradley, Richard C. .
PROBABILITY SURVEYS, 2005, 2 :107-144
[9]  
Couvreur L, 2000, INT CONF ACOUST SPEE, P604, DOI 10.1109/ICASSP.2000.862054
[10]  
De Castro Y, 2016, J MACH LEARN RES, V17