GENERAL FRACTIONAL-ORDER ANOMALOUS DIFFUSION WITH NON-SINGULAR POWER-LAW KERNEL

被引:27
作者
Yang, Xiao-Jun [1 ,2 ]
Srivastava, Hari Mohan [3 ,4 ]
Torres, Delfim F. M. [5 ]
Debbouche, Arnar [5 ,6 ]
机构
[1] China Univ Min & Technol, State Key Lab Geomech & Deep Underground Engn, Xuzhou, Peoples R China
[2] China Univ Min & Technol, Sch Mech & Civil Engn, Xuzhou, Peoples R China
[3] Univ Victoria, Dept Math & Stat, Victoria, BC, Canada
[4] China Med Univ, Taichung, Taiwan
[5] Univ Aveiro, Dept Math, Ctr Res & Dev Math & Applicat CIDMA, Aveiro, Portugal
[6] Guelma Univ, Dept Math, Guelma, Algeria
来源
THERMAL SCIENCE | 2017年 / 21卷
关键词
general fractional derivative with non-singular power-law kernel; Riemann-Liouville general fractional derivative; anomalous diffusion; Liouville-Caputo general fractional derivative; MODELS; FLOW;
D O I
10.2298/TSCI170610193Y
中图分类号
O414.1 [热力学];
学科分类号
摘要
In this paper, we investigate general fractional derivatives with a non-singular power-law kernel. The anomalous diffusion models with non-singular power-law kernel are discussed in detail. The results are efficient for modelling the anomalous behaviors within the frameworks of the Riemann-Lionville and Liouville-Caputo general fractional derivatives.
引用
收藏
页码:S1 / S9
页数:9
相关论文
共 21 条
[1]  
[Anonymous], LOCAL FRACTIONAL INT
[2]  
[Anonymous], 2006, THEORY APPL FRACTION
[3]   NEW FRACTIONAL DERIVATIVES WITH NON-LOCAL AND NON-SINGULAR KERNEL Theory and Application to Heat Transfer Model [J].
Atangana, Abdon ;
Baleanu, Dumitru .
THERMAL SCIENCE, 2016, 20 (02) :763-769
[4]   ANOMALOUS DIFFUSION IN DISORDERED MEDIA - STATISTICAL MECHANISMS, MODELS AND PHYSICAL APPLICATIONS [J].
BOUCHAUD, JP ;
GEORGES, A .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1990, 195 (4-5) :127-293
[5]  
Caputo M., 2015, Progress Fract. Diff. Appl, V1, P73, DOI DOI 10.12785/PFDA/010201
[6]   GENERAL FRACTIONAL CALCULUS IN NON-SINGULAR POWER-LAW KERNEL APPLIED TO MODEL ANOMALOUS DIFFUSION PHENOMENA IN HEAT TRANSFER PROBLEMS [J].
Gao, Feng .
THERMAL SCIENCE, 2017, 21 :S11-S18
[7]   FRACTIONAL MAXWELL FLUID WITH FRACTIONAL DERIVATIVE WITHOUT SINGULAR KERNEL [J].
Gao, Feng ;
Yang, Xiao-Jun .
THERMAL SCIENCE, 2016, 20 :S871-S877
[8]   STOCHASTIC PATHWAY TO ANOMALOUS DIFFUSION [J].
KLAFTER, J ;
BLUMEN, A ;
SHLESINGER, MF .
PHYSICAL REVIEW A, 1987, 35 (07) :3081-3085
[9]  
Losada J., 2015, Prog. Fract. Differ. Appl, V1, P87, DOI DOI 10.12785/PFDA/010202
[10]  
Mainardi F., 2000, Fractional Calculus and Waves in Linear Viscoelasticity: an Introduction to Mathematical Models, DOI DOI 10.1142/P926