Improved performance of microbial fuel cell using combination biocathode of graphite fiber brush and graphite granules

被引:82
作者
Zhang, Guo-dong [1 ]
Zhao, Qing-liang [1 ]
Jiao, Yan [2 ]
Zhang, Jin-na [1 ]
Jiang, Jun-qiu [1 ]
Ren, Nanqi [1 ]
Kim, Byung Hong [1 ,3 ]
机构
[1] Harbin Inst Technol, Sch Municipal & Environm Engn, SKLUWRE, Harbin 150090, Peoples R China
[2] Shanxi Univ Finance & Econ, Appl Econ Res Inst, Taiyuan 030006, Peoples R China
[3] Korea Inst Sci & Technol, Water Environm Ctr, Seoul 136791, South Korea
关键词
Microbial fuel cells; Biocathode; Graphite fiber brush; Graphite granules; Cell performance; Microbial community; ELECTRICITY-GENERATION; WASTE-WATER; START-UP; CATHODE; REDUCTION; CATALYSTS; GLUCOSE; COTMPP;
D O I
10.1016/j.jpowsour.2011.03.096
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The efficiency and sustainability of microbial fuel cell (MFC) are heavily dependent on the cathode performance. We show here that the use of graphite fiber brush (GBF) together with graphite granules (GGs) as a basal material for biocathode (MFC reactor type R1) significantly improve the performance of a MFC compared with MFCs using GGs (MFC reactor type R2) or GFB (MFC reactor type R3) individually. Compared with R3, the use of the combination biocathode (R1) can shorten the start-up time by 53.75%, improve coulombic efficiencies (CEs) by 21.0 +/- 2.7% at external resistance (R-EX) of 500 Omega, and increase maximum power densities by 38.2 +/- 12.6%. Though the start-up time and open circuit voltage (OCV) of the reactor R2 are similar to R1, the CE (R-EX = 500 Omega) and maximum power density of R2 are 21.4 +/- 1.7% and 38.2 +/- 15.6% lower than that of R1. Fluorescence in situ hybridization (FISH) analyses indicate the bacteria on cathodes of R1 and R2 are richer than that of R3. Molecular taxonomic analyses reveal that the biofilm formed on the biocathode surface is dominated by strains belonging to Nitrobacter, Achromobacter, Acinetobacter, and Bacteroidetes. Combination of GFB and GGs as biocathode material in MFC is more efficient and can achieve sustainable electricity recovery from organic substances, which substantially increases the viability and sustainability of MFCs. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:6036 / 6041
页数:6
相关论文
共 40 条
[1]   Continuous electricity generation at high voltages and currents using stacked microbial fuel cells [J].
Aelterman, Peter ;
Rabaey, Korneel ;
Pham, Hai The ;
Boon, Nico ;
Verstraete, Willy .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2006, 40 (10) :3388-3394
[2]   Ribosomal RNA-targeted nucleic acid probes for studies in microbial ecology [J].
Amann, R ;
Ludwig, W .
FEMS MICROBIOLOGY REVIEWS, 2000, 24 (05) :555-565
[3]   PHYLOGENETIC IDENTIFICATION AND IN-SITU DETECTION OF INDIVIDUAL MICROBIAL-CELLS WITHOUT CULTIVATION [J].
AMANN, RI ;
LUDWIG, W ;
SCHLEIFER, KH .
MICROBIOLOGICAL REVIEWS, 1995, 59 (01) :143-169
[4]  
[Anonymous], MICROBIAL FUEL CELLS
[5]   Electricity production by Geobacter sulfurreducens attached to electrodes [J].
Bond, DR ;
Lovley, DR .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2003, 69 (03) :1548-1555
[6]   Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells [J].
Chaudhuri, SK ;
Lovley, DR .
NATURE BIOTECHNOLOGY, 2003, 21 (10) :1229-1232
[7]   Application of biocathode in microbial fuel cells: cell performance and microbial community [J].
Chen, Guo-Wei ;
Choi, Soo-Jung ;
Lee, Tae-Ho ;
Lee, Gil-Young ;
Cha, Jae-Hwan ;
Kim, Chang-Won .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2008, 79 (03) :379-388
[8]   Power densities using different cathode catalysts (Pt and CoTMPP) and polymer binders (Nafion and PTFE) in single chamber microbial fuel cells [J].
Cheng, S ;
Liu, H ;
Logan, BE .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2006, 40 (01) :364-369
[9]   Increased power generation in a continuous flow MFC with advective flow through the porous anode and reduced electrode spacing [J].
Cheng, S ;
Liu, H ;
Logan, BE .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2006, 40 (07) :2426-2432
[10]   Direct Biological Conversion of Electrical Current into Methane by Electromethanogenesis [J].
Cheng, Shaoan ;
Xing, Defeng ;
Call, Douglas F. ;
Logan, Bruce E. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2009, 43 (10) :3953-3958