A highly scalable dielectric metamaterial with superior capacitor performance over a broad temperature

被引:192
作者
Zhang, Tian [1 ]
Chen, Xin [2 ]
Thakur, Yash [1 ]
Lu, Biao [1 ]
Zhang, Qiyan [1 ]
Runt, J. [2 ]
Zhang, Q. M. [1 ,2 ]
机构
[1] Penn State Univ, Sch Elect Engn & Comp Sci, Mat Res Inst, University Pk, PA 16802 USA
[2] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA
关键词
POLYMER NANOCOMPOSITES; ENERGY DENSITY; STRENGTH; STORAGE;
D O I
10.1126/sciadv.aax6622
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Although many polymers exhibit excellent dielectric performance including high energy density with high efficiency at room temperature, their electric and dielectric performance deteriorates at high temperatures (similar to 150 degrees C). Here, we show that nanofillers at very low volume content in a high-temperature (high-glass transition temperature) semicrystalline dipolar polymer, poly( arylene ether urea), can generate local structural changes, leading to a marked increase in both dielectric constant and breakdown field, and substantially reduce conduction losses at high electric fields and over a broad temperature range. Consequently, the polymer with a low nanofiller loading (0.2 volume %) generates a high discharged energy density of ca. 5 J/cm(3) with high efficiency at 150 degrees C. The experimental data reveal microstructure changes in the nanocomposites, which, at 0.2 volume % nanofiller loading, reduce constraints on dipole motions locally in the glassy state of the polymer, reduce the mean free path for the mobile charges, and enhance the deep trap level.
引用
收藏
页数:7
相关论文
共 37 条
[21]   GENERAL PROCEDURE FOR EVALUATING AMORPHOUS SCATTERING AND CRYSTALLINITY FROM X-RAY-DIFFRACTION SCANS OF SEMICRYSTALLINE POLYMERS [J].
MURTHY, NS ;
MINOR, H .
POLYMER, 1990, 31 (06) :996-1002
[22]   THERMALLY STIMULATED DISCHARGE CURRENT STUDIES IN POLARIZED POLYPROPYLENE [J].
PILLAI, PKC ;
NARULA, GK ;
TRIPATHI, AK ;
MENDIRATTA, RG .
PHYSICA STATUS SOLIDI A-APPLIED RESEARCH, 1981, 67 (02) :649-654
[23]   Status quo and future prospects for metallized polypropylene energy storage capacitors [J].
Rabuffi, M ;
Picci, G .
IEEE TRANSACTIONS ON PLASMA SCIENCE, 2002, 30 (05) :1939-1942
[24]   Capacitors [J].
Sarjeant, WJ ;
Zirnheld, J ;
MacDougall, FW .
IEEE TRANSACTIONS ON PLASMA SCIENCE, 1998, 26 (05) :1368-1392
[25]   Polymer nanocomposites: A small part of the story [J].
Schandler, L. S. ;
Brinson, L. C. ;
Sawyer, W. G. .
JOM, 2007, 59 (03) :53-60
[26]   Metamaterials and negative refractive index [J].
Smith, DR ;
Pendry, JB ;
Wiltshire, MCK .
SCIENCE, 2004, 305 (5685) :788-792
[27]   High-Temperature Capacitor Polymer Films [J].
Tan, Daniel ;
Zhang, Lili ;
Chen, Qin ;
Irwin, Patricia .
JOURNAL OF ELECTRONIC MATERIALS, 2014, 43 (12) :4569-4575
[28]   Proposal of a multi-core model for polymer nanocomposite dielectrics [J].
Tanaka, T ;
Kozako, M ;
Fuse, N ;
Ohki, Y .
IEEE TRANSACTIONS ON DIELECTRICS AND ELECTRICAL INSULATION, 2005, 12 (04) :669-681
[29]   Enhancement of the dielectric response in polymer nanocomposites with low dielectric constant fillers [J].
Thakur, Yash ;
Zhang, Tian ;
Iacob, C. ;
Yang, Tiannan ;
Bernholc, J. ;
Chen, L. Q. ;
Runt, J. ;
Zhang, Q. M. .
NANOSCALE, 2017, 9 (31) :10992-10997
[30]   Reducing conduction losses in high energy density polymer using nanocomposites [J].
Thakur, Yash ;
Lean, Meng H. ;
Zhang, Q. M. .
APPLIED PHYSICS LETTERS, 2017, 110 (12)