The Navier-Stokes equations with the Neumann boundary condition in an infinite cylinder

被引:1
作者
Abe, K. [1 ]
机构
[1] Osaka City Univ, Grad Sch Sci, Dept Math, Sumiyoshi Ku, 3-3-138 Sugimoto, Osaka 5588585, Japan
关键词
VANISHING VISCOSITY; LAPLACE OPERATORS; CALCULUS; SYSTEM; POWERS; SPACES;
D O I
10.1007/s00229-018-01102-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove unique existence of local-in-time smooth solutions of the Navier-Stokes equations for initial data in L-p and p is an element of [3,8) in an infinite cylinder, subject to the Neumann boundary condition.
引用
收藏
页码:359 / 383
页数:25
相关论文
共 39 条
[1]   Vanishing viscosity limits for axisymmetric flows with boundary [J].
Abe, Ken .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2020, 137 :1-32
[2]  
Adams R.A., 2003, Sobolev Spaces
[3]   ESTIMATES NEAR THE BOUNDARY FOR SOLUTIONS OF ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS SATISFYING GENERAL BOUNDARY CONDITIONS .1. [J].
AGMON, S ;
DOUGLIS, A ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1959, 12 (04) :623-727
[4]   On a Resolvent Estimate of a System of Laplace Operators with Perfect Wall Condition [J].
Akiyama, T. ;
Kasai, H. ;
Shibata, Y. ;
Tsutsumi, M. .
FUNKCIALAJ EKVACIOJ-SERIO INTERNACIA, 2004, 47 (03) :361-394
[5]  
[Anonymous], 1970, SINGULAR INTEGRALS D
[6]  
[Anonymous], PROGR NONLINEAR DIFF
[7]  
[Anonymous], 2012, Non-homogeneous boundary value problems and applications
[8]   EXISTENCE AND UNIQUENESS OF SOLUTION TO BIDIMENSIONAL EULER EQUATION [J].
BARDOS, C .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1972, 40 (03) :769-790
[9]  
Bergh J., 1976, GRUNDLEHREN MATH WIS
[10]  
Bourguignon J. P., 1974, J. Funct. Anal, V15, P341