Thermal Infrared Colorization Using Deep Learning

被引:2
作者
Ciftci, Oguzhan [1 ]
Akcayol, M. Ali [2 ]
机构
[1] Aselsan Inc, Dept Command Control Software Design, Ankara, Turkey
[2] Gazi Univ, Comp Engn Dept, Ankara, Turkey
来源
2021 8TH INTERNATIONAL CONFERENCE ON ELECTRICAL AND ELECTRONICS ENGINEERING (ICEEE 2021) | 2021年
关键词
deep learning; image colorization; thermal infrared image;
D O I
10.1109/ICEEE52452.2021.9415929
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Day by day the usage of infrared cameras has been increasing in the world. With the increasing use of thermal infrared cameras and images, especially in military, security and medicine, the need for coloring thermal infrared images to visible spectrum has arisen. In this study, a deep based model has been developed to generate visible spectrum images (RGB - Red Green Blue) from thermal infrared (TIR) images. In the proposed model, an autoencoder architecture with skip connections has been used to generate RGB images. KAIST-MS (Korea Advanced Institute of Science and Technology-Multispectral) dataset used for training and test the developed model. The experimental results extensively tested using Peak Signal-to-Noise Ratio (PSNR), Least Absolute Deviations (L1), Root Mean Squared Error (RMSE) and Structural Similarity Index Measure (SSIM).
引用
收藏
页码:323 / 326
页数:4
相关论文
共 15 条
[1]  
[Anonymous], 2015, ACS SYM SER
[2]   Generating Visible Spectrum Images from Thermal Infrared [J].
Berg, Amanda ;
Ahlberg, Jorgen ;
Felsberg, Michael .
PROCEEDINGS 2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW), 2018, :1224-1233
[3]   Deep Colorization [J].
Cheng, Zezhou ;
Yang, Qingxiong ;
Sheng, Bin .
2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, :415-423
[4]  
Glorot X., 2010, PROC 13 INT C ARTIF, P249
[5]   Let there be Color!: Joint End-to-end Learning of Global and Local Image Priors for Automatic Image Colorization with Simultaneous Classification [J].
Iizuka, Satoshi ;
Simo-Serra, Edgar ;
Ishikawa, Hiroshi .
ACM TRANSACTIONS ON GRAPHICS, 2016, 35 (04)
[6]   Thermal infrared colorization via conditional generative adversarial network [J].
Kuang, Xiaodong ;
Zhu, Jianfei ;
Sui, Xiubao ;
Liu, Yuan ;
Liu, Chengwei ;
Chen, Qian ;
Gu, Guohua .
INFRARED PHYSICS & TECHNOLOGY, 2020, 107
[7]   Learning Representations for Automatic Colorization [J].
Larsson, Gustav ;
Maire, Michael ;
Shakhnarovich, Gregory .
COMPUTER VISION - ECCV 2016, PT IV, 2016, 9908 :577-593
[8]   Colorization using optimization [J].
Levin, A ;
Lischinski, D ;
Weiss, Y .
ACM TRANSACTIONS ON GRAPHICS, 2004, 23 (03) :689-694
[9]  
Limmer M, 2016, 2016 15TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA 2016), P61, DOI [10.1109/ICMLA.2016.114, 10.1109/ICMLA.2016.0019]
[10]  
Luan Q., 2007, P 18 EUR C REND TECH