A Dai-Yuan conjugate gradient algorithm with sufficient descent and conjugacy conditions for unconstrained optimization

被引:30
作者
Andrei, Neculai [1 ]
机构
[1] Ctr Adv Modeling & Optimizat, Res Inst Informat, Bucharest 1, Romania
关键词
unconstrained optimization; conjugate gradient method; sufficient descent condition; conjugacy condition; numerical comparisons;
D O I
10.1016/j.aml.2007.05.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A modification of the Dai-Yuan conjugate gradient algorithm is proposed. Using exact line search, the algorithm reduces to the original version of the Dai and Yuan computational scheme. For inexact line search the algorithm satisfies both sufficient descent and conjugacy conditions. A global convergence result is proved when the Wolfe line search conditions are used. Computational results, for a set consisting of 750 unconstrained optimization test problems, show that this new conjugate gradient algorithm substantially outperforms the Dai-Yuan conjugate gradient algorithm and comes close to its hybrid variants. (C) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:165 / 171
页数:7
相关论文
共 12 条
[1]  
ANDREI N, TEST FUNCTIONS UNCON
[2]   Scaled memoryless BFGS preconditioned conjugate gradient algorithm for unconstrained optimization [J].
Andrei, Neculai .
OPTIMIZATION METHODS & SOFTWARE, 2007, 22 (04) :561-571
[3]   A spectral conjugate gradient method for unconstrained optimization [J].
Birgin, EG ;
Martínez, JM .
APPLIED MATHEMATICS AND OPTIMIZATION, 2001, 43 (02) :117-128
[4]   CUTE - CONSTRAINED AND UNCONSTRAINED TESTING ENVIRONMENT [J].
BONGARTZ, I ;
CONN, AR ;
GOULD, N ;
TOINT, PL .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1995, 21 (01) :123-160
[5]   A class of globally convergent conjugate gradient methods [J].
Dai, YH ;
Yuan, YX .
SCIENCE IN CHINA SERIES A-MATHEMATICS, 2003, 46 (02) :251-261
[6]   A family of hybrid conjugate gradient methods for unconstrained optimization [J].
Dai, YH .
MATHEMATICS OF COMPUTATION, 2003, 72 (243) :1317-1328
[7]   An efficient hybrid conjugate gradient method for unconstrained optimization [J].
Dai, YH ;
Yuan, Y .
ANNALS OF OPERATIONS RESEARCH, 2001, 103 (1-4) :33-47
[8]  
Dai YH, 2001, NUMER MATH, V89, P83, DOI 10.1007/s002110000253
[9]   A nonlinear conjugate gradient method with a strong global convergence property [J].
Dai, YH ;
Yuan, Y .
SIAM JOURNAL ON OPTIMIZATION, 1999, 10 (01) :177-182
[10]   Benchmarking optimization software with performance profiles [J].
Dolan, ED ;
Moré, JJ .
MATHEMATICAL PROGRAMMING, 2002, 91 (02) :201-213