Drift-dependent changes in iceberg size-frequency distributions

被引:19
作者
Kirkham, James D. [1 ,2 ,3 ]
Rosser, Nick J. [1 ,2 ]
Wainwright, John [1 ,2 ]
Jones, Emma C. Vann [1 ,2 ]
Dunning, Stuart A. [4 ]
Lane, Victoria S. [5 ]
Hawthorn, David E. [6 ]
Strzelecki, Mateusz C. [7 ]
Szczucinski, Witold [8 ]
机构
[1] Univ Durham, Geog Dept, Durham DH1 3LE, England
[2] Univ Durham, Inst Hazard Risk & Resilience, Durham DH1 3LE, England
[3] Univ Cambridge, Scott Polar Res Inst, Cambridge CB2 1ER, England
[4] Newcastle Univ, Sch Geog Polit & Sociol, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England
[5] Univ Leicester, SEIS UK, Dept Geol, Leicester LE1 7RH, Leics, England
[6] British Geol Survey, Lyell Ctr, Edinburgh EH14 4AP, Midlothian, Scotland
[7] Univ Wroclaw, Inst Geog & Reg Dev, PL-50137 Wroclaw, Poland
[8] Adam Mickiewicz Univ, Inst Geol, PL-61680 Poznan, Poland
关键词
GREENLAND; ICE; ICEQUAKES; DYNAMICS; GLACIER; MELTWATER;
D O I
10.1038/s41598-017-14863-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Although the size-frequency distributions of icebergs can provide insight into how they disintegrate, our understanding of this process is incomplete. Fundamentally, there is a discrepancy between iceberg power-law size-frequency distributions observed at glacial calving fronts and lognormal size-frequency distributions observed globally within open waters that remains unexplained. Here we use passive seismic monitoring to examine mechanisms of iceberg disintegration as a function of drift. Our results indicate that the shift in the size-frequency distribution of iceberg sizes observed is a product of fracture-driven iceberg disintegration and dimensional reductions through melting. We suggest that changes in the characteristic size-frequency scaling of icebergs can be explained by the emergence of a dominant set of driving processes of iceberg degradation towards the open ocean. Consequently, the size-frequency distribution required to model iceberg distributions accurately must vary according to distance from the calving front.
引用
收藏
页数:10
相关论文
共 66 条
[11]   Calving seismicity from iceberg-sea surface interactions [J].
Bartholomaus, T. C. ;
Larsen, C. F. ;
O'Neel, S. ;
West, M. E. .
JOURNAL OF GEOPHYSICAL RESEARCH-EARTH SURFACE, 2012, 117
[12]   Calving processes and the dynamics of calving glaciers [J].
Benn, Douglas I. ;
Warren, Charles R. ;
Mottram, Ruth H. .
EARTH-SCIENCE REVIEWS, 2007, 82 (3-4) :143-179
[13]  
Bhatia MP, 2013, NAT GEOSCI, V6, P274, DOI [10.1038/ngeo1746, 10.1038/NGEO1746]
[14]   Modelling the dynamics and thermodynamics of icebergs [J].
Bigg, GR ;
Wadley, MR ;
Stevens, DP ;
Johnson, JA .
COLD REGIONS SCIENCE AND TECHNOLOGY, 1997, 26 (02) :113-135
[15]   THE LOGNORMAL-DISTRIBUTION, ENVIRONMENTAL DATA, AND RADIOLOGICAL MONITORING [J].
BLACKWOOD, LG .
ENVIRONMENTAL MONITORING AND ASSESSMENT, 1992, 21 (03) :193-210
[16]   How to store and share geophysical data [J].
Brisbourne, Alex .
ASTRONOMY & GEOPHYSICS, 2012, 53 (04) :19-20
[17]   Seismic activity and surface motion of a steep temperate glacier: a study on Triftgletscher, Switzerland [J].
Canassy, Pierre Dalban ;
Faillettaz, Jerome ;
Walter, Fabian ;
Huss, Matthias .
JOURNAL OF GLACIOLOGY, 2012, 58 (209) :513-528
[18]   Satellite gravity measurements confirm accelerated melting of Greenland ice sheet [J].
Chen, J. L. ;
Wilson, C. R. ;
Tapley, B. D. .
SCIENCE, 2006, 313 (5795) :1958-1960
[19]   Are your data really Pareto distributed? [J].
Cirillo, Pasquale .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2013, 392 (23) :5947-5962
[20]   Power-Law Distributions in Empirical Data [J].
Clauset, Aaron ;
Shalizi, Cosma Rohilla ;
Newman, M. E. J. .
SIAM REVIEW, 2009, 51 (04) :661-703